
Have You Driven an SELinux Lately?
An Update on the Security Enhanced Linux Project

James Morris
Red Hat Asia Pacific Pte Ltd
jmorris@redhat.com

Abstract

Security Enhanced Linux (SELinux) [18] has evolved
rapidly over the last few years, with many enhancements
made to both its core technology and higher-level tools.

Following integration into several Linux distributions,
SELinux has become the first widely used Mandatory
Access Control (MAC) scheme. It has helped Linux to
receive the highest security certification likely possible
for a mainstream off the shelf operating system.

SELinux has also proven its worth for general purpose
use in mitigating several serious security flaws.

While SELinux has a reputation for being difficult to
use, recent developments have helped significantly in
this area, and user adoption is advancing rapidly.

This paper provides an informal update on the project,
discussing key developments and challenges, with the
aim of helping people to better understand current
SELinux and to make more effective use of it in a wide
variety of situations.

1 Introduction

The scope of this paper is to cover significant advances
in the SELinux project since its initial integration with
mainstream Linux distributions. For context, a brief
technical overview of SELinux is provided, followed by
project background information.

1.1 Technical Overview

SELinux is a flexible MAC framework for Linux, de-
rived from the Flask research project [30], and inte-
grated into the Linux kernel via the Linux Security Mod-
ules (LSM) API [34].

All security-relevant accesses between subjects and ob-
jects are controlled according to a dynamically loaded
mandatory security policy. Clean separation of mecha-
nism and policy provides considerable flexibility in the
implementation of security goals for the system, while
fine granularity of control ensures complete mediation.

An arbitrary number of different security models may be
composed (or "stacked") by SELinux, with their com-
bined effect being fully analyzable under a unified pol-
icy scheme.

Currently, the default SELinux implementation com-
poses the following security models: Type Enforcement
(TE) [7], Role Based Access Control (RBAC) [12],
Muilti-level Security (MLS) [29], and Identity Based
Access Control (IBAC). These complement the standard
Linux Discretionary Access Control (DAC) scheme.

With these models, SELinux provides comprehensive
mandatory enforcement of least privilege, confidential-
ity, and integrity. It is able to flexibly meet a wide range
of general security requirements:

• Strong isolation of applications.

• Information flow control.

• Ensuring critical processing flow.

• Protection of system integrity.

• Containment of security vulnerabilities.

SELinux is also able to meet the requirements of and
interoperate with traditional MLS systems.

1.2 Project Background

Based on the growing need for stronger security [19],
SELinux was released as an open source project by the

1



US National Security Agency in December 2000. A vi-
brant community formed around the project, with De-
bian developers leading efforts to integrate SELinux into
a mainstream distribution. Subsequent early integra-
tion efforts were also largely community-led, with indi-
vidual developers undertaking SELinux packaging work
for the Gentoo, SuSE, and Red Hat distributions.

In March 2001, the NSA presented SELinux to senior
kernel developers at the Linux Kernel Summit. Feed-
back from the summit led to the formation of the LSM
project—the aim of which was to allow different secu-
rity mechanisms to be plugged into the core kernel.

SELinux helped to drive LSM requirements, while
SELinux developers participated as core contributors in
LSM development. SELinux was ported to the result-
ing LSM API, and then merged into the mainline Linux
kernel for the kernel’s v2.6 release in December 2003.

Concurrently, SELinux was fully integrated into the Fe-
dora Core distribution, version 2 of which was released
in May 2004. This marked the first release of an oper-
ating system with official support for SELinux. The se-
curity policy distributed with Fedora Core 2 was largely
derived from the initial NSA example policy, as well
as from ad-hoc community contributions. It had not yet
been well-tuned to many general Linux deployment sce-
narios and was a noted source of frustration in causing
many applications to fail unexpectedly due to policy vi-
olations.

In some cases, SELinux was blocking previously unde-
tected programming errors (such as the leaking of open
file descriptors), although the initial security policy was
also generally regarded as being too strict. A solu-
tion was implemented during the development of Fedora
Core 3 (released November 2004), whereby only criti-
cal applications were confined by policy. This policy
was designated as "targeted", and was considered to be
a major improvement in usability. It allowed SELinux to
be enabled by default, leading to what is believed to be
the first ever release of a mainstream operating system
with mandatory security enabled in a standard configu-
ration.

Red Hat Enterprise Linux 4, based on Fedora Core 3,
shipped a few months later in February 2005 as the first
commercial distribution with full SELinux support.

These initial major distribution releases, while shipping
with relatively few confined services by default, pro-

vided useful mandatory security out of the box. They
were key milestones in the the transition of SELinux
from a research project into a production-deployable
system.

With SELinux now being distributed to the wider com-
munity, the project began to evolve rapidly in terms of
both function and usability.

2 Policy

Early versions of targeted policy confined only a few
critical and typically network-facing applications. On-
going contributions from the community, in conjunction
with continued efforts by core project developers, led to
a steady increase in the number of applications confined
by policy. As of April 2008, there was policy support for
several hundred applications in the upstream repository.

2.1 Booleans

The Booleans facility1 was developed to allow certain
policy features to be selectively enabled or disabled
without having to reload policy. This was originally de-
signed with smaller systems in mind, but has proven to
be significantly useful in the general case.

Feedback from the community indicated that there were
common patterns in the way applications would be cus-
tomized. Booleans were able to provide a suitable high-
level mechanism for administrators to effect limited yet
useful customization of policy according to these pat-
terns.

For example: policy for an FTP server might have a
boolean which enables remote access to user home di-
rectories. Rather than having to modify or even know
any SELinux policy, the administrator could instead
control this behaviour by simply running a command to
enable or disable the associated boolean.

2.2 Loadable Policy Modules

SELinux initially shipped with a monolithic policy
scheme, requiring a full rebuild of policy from source
for any modification. The Loadable Policy Module ar-
chitecture [20] was introduced to provide a more robust

1also referred to as Conditional Policy

2



and flexible approach to composing and deploying pol-
icy.

With this new architecture, binary policy modules could
be loaded dynamically, eliminating the need for systems
to carry a full policy source tree and associated build
infrastructure in case customization was required.

The core operating system policy was separated into a
base policy module, allowing it to be streamlined and
further tailored for different use scenarios. Higher-level
components could now be developed and managed in-
dependently, enabling the distribution of third-party pol-
icy, as well as the ability to incorporate policy modules
with application packages.

Loadable Policy Modules were first shipped with Fedora
Core 5 in March 2006.

2.3 Reference Policy

One of the most significant advances in the SELinux
project has been the Reference Policy effort [28]. This
was a fundamental reworking of the policy framework
to provide a more structured basis for policy design and
analysis. A critical goal was to improve the quality of
policy and thus facilitate increased overall assurance.

Key elements of the Reference Policy effort included:

• Introducing the principles of layering and inter-
faces to the policy language to facilitate better ab-
straction and modularization.

• Leveraging the new Loadable Policy Module archi-
tecture discussed in section 2.2.

• Building support for documentation into the infras-
tructure to encourage the practice of literate pro-
gramming [17].

• Easier configuration of security models, so that fea-
tures such as MLS may enabled without requiring
separate policy source trees.

• Porting the NSA example policy to the new frame-
work.

For policy developers, Reference Policy meant a greatly
simplified view of policy. Much of the low-level com-
plexity was abstracted away. Design could be performed

in a modular fashion, utilizing well-defined and docu-
mented interfaces. This facilitated a greater focus on
high-level security goals and better comprehensibility of
policy.

Reference Policy was first shipped along with Loadable
Policy Modules in Fedora Core 5.

2.4 Other Developments

The (somewhat experimental) MLS functionality sup-
plied with the original SELinux release was signifi-
cantly revised to meet certification requirements and to
be more useful in the real world. This included policy
enhancements and the ability to enable MLS dynami-
cally. MLS was previously a kernel compile-time option
and not enabled at all in mainstream distributions.

The MLS infrastructure was also adapted to a new secu-
rity model, Multi-Category Security (MCS) [24], which
utilized the category attribute of MLS labels and a sim-
ple policy to provide end users with a discretionary la-
beling scheme. Fedora Core 5 shipped with MCS en-
abled by default, allowing much of the MLS infrastruc-
ture to be exercised by general users. The future of MCS
is currently unclear, as its wider adoption requires ex-
tension to applications, and it may be better to instead
utilize TE for the same purpose.

The RBAC scheme was greatly improved, allowing
roles to be defined and loaded as policy modules, rather
than having to be managed as part of the previous mono-
lithic policy scheme.

By the time of writing, targeted and strict versions of
policy in the upstream repository had been merged into
a single version. Targeted behavior is now selected by
including the "unconfined" policy module. Strict behav-
ior may also be re-selected incrementally by mapping
users to confined roles.

3 Toolchain and Management

Major changes such as the Loadable Policy Modules
and Reference Policy projects entailed reworking much
of the low level SELinux infrastructure. This provided
opportunities to improve the function and usability of
the toolchain, and to implement a foundation for the de-
velopment of high-level SELinux applications.

The following are highlights of recent advances made in
SELinux toolchain and management technology.

3



3.1 libsemanage

The extensible libsemanage library was developed in
conjunction with Reference Policy as the first program-
matic API for applications which need to manipulate
policy. Such applications range in scope from the
core system management utilities and scripts through to
graphical policy design and management tools.

3.2 semanage

The semanage command line tool was introduced as a
means to unify low-level SELinux administrative tasks,
many of which, prior to Reference Policy, involved edit-
ing disparate policy source files and rebuilding policy.

For the system administrator, semanage improved over-
all usability by providing a well documented, canonical
utility for managing key aspects of an SELinux system.
Examples of semanage use include configuring local file
labeling rules and the labeling of system objects such as
network ports.

Recently, much the core of semanage has been refac-
tored into a Python module to enable re-use by other
management tools such as system-config-selinux.

3.3 system-config-selinux

system-config-selinux is a GUI tool for comprehensive
SELinux system management. It has been integrated
into Fedora-based distributions, and serves as a graphi-
cal alternative to semanage.

A flexible underlying Python-based architecture should
make it readily adaptable to the management schemes
of other distributions and operating systems.

3.4 Loadable Policy Module Tools

• checkmodule is the policy module compiler. It ver-
ifies the correctness of a policy source module then
converts it into a binary representation.

• semodule_package bundles a binary policy file as
created by checkmodule with optional related data
such as file labeling data into a format ready to be
installed by semodule.

• semodule is the core policy module management
tool. It is used for installing, upgrading, querying
and deleting binary policy modules.

3.5 Boolean Management

setsebool and getsebool are the standard command-line
utilities for managing the state of policy Booleans (see
section 2.1). Booleans may also be managed via system-
config-selinux.

3.6 restorecond

A common early issue for administrators was that some
files were particularly susceptible to being mislabeled,
such as the /etc/resolv.conf file being recreated by cer-
tain system tools.

The restorecond utility was developed to automate rela-
beling of such files, reducing administrative burden.

Files to be monitored are listed in a configuration file
(typically /etc/selinux/restorecond.conf ). restorecond
utilizes the Inotify subsystem to detect changes to any
of these files, then performs relabeling if needed.

Note that file labeling is usually handled transparently
by SELinux policy, or by enabling system tools to pre-
serve security labels on files. As such, restorecond is
an optional SELinux component aimed at improving us-
ability on general purpose systems.

3.7 setroubleshoot

setroubleshoot is a GNOME facility which triggers a
user alert upon SELinux policy violations. The alert no-
tifies the user of the problem and assists in resolving the
issue or filing a report with SELinux developers. setrou-
bleshoot may also be configured to send email alerts to
an administrator for centralized management.

setroubleshoot utilizes a pluggable rule database and at-
tempts to heuristically determine problem causes.

Community feedback indicates this facility has signifi-
cantly improved the SELinux user experience, by help-
ing to resolve issues encountered, and by giving users
a clearer understanding of what is happening on their
system when SELinux prevents an access.

setroubleshoot first shipped with Fedora Core 6 in Oc-
tober 2006.

4



3.8 SELinux Policy Management Server

The SELinux Policy Management Server [21] is an on-
going project which addresses several requirements in
the management of policy on an SELinux system. Its
aim is to provide a platform for installing, updating and
querying SELinux policy on production systems, with
the ability to safely delegate administration of policy to
separate users.

Currently in a prototype phase, a notable planned fea-
ture of the policy management server is support for re-
motely managing a single policy across multiple ma-
chines.

4 Policy Development

Since the introduction of Reference Policy, there have
been several advances in the area of authoring SELinux
policy.

4.1 Command Line Tools

While SELinux policy is ideally shipped with the sys-
tem and managed with high-level tools, administrators
may still wish to develop their own enhancements to
policy. This task has been simplified somewhat with
modular policy and new or enhanced command-line
tools.

4.1.1 audit2allow

The audit2allow utility parses the audit log and converts
access denial records into security policy. It has proven
to be a valuable tool in resolving local policy issues.

For example, in the case of an application not having
any SELinux policy (e.g. locally developed or provided
by a third party), a policy module may be developed
for it with a few simple commands [31]. The system
is configured in permissive mode, so that access denials
will be logged but not be enforced, and then the audit
log is passed to audit2allow to generate a binary policy
module. The new module may then be loaded into the
system via semodule. This is a form of "learning mode".
It is always recommended that the administrator review
the resulting policy, and to request further review from
the community if necessary.

4.1.2 audit2why

The audit2why tool was developed to help administra-
tors better understand SELinux audit messages. It takes
raw audit logs as input and analyzes them to deter-
mine which policy component triggered a particular au-
dit message.

Often, the audit messages alone do not provide enough
information to trace an access denial back to the asso-
ciated policy component. Access denials have several
possible causes: missing TE rules, missing RBAC rules,
and policy constraints. audit2why is able to pinpoint
precisely which.

Recently, audit2why was extended to determine which
policy Boolean, if applicable, may be modified to re-
solve the issue.

4.2 SLIDE

The SELinux Policy IDE (SLIDE) is a sophisticated GUI
policy development environment, implemented as an
Eclipse plugin. It is aimed at making policy develop-
ment easier, and includes many developer-oriented fea-
tures such as syntax highlighting, project exploration,
auto-completion, wizards, and refactoring support.

SLIDE also includes support for testing, deploying and
remotely managing policy. It was recently integrated
into the Fedora distribution as an official package.

4.3 Policy Druid

A policy generation druid is included in system-config-
selinux. This is a simple graphical wizard which
presents the user with a series of questions about an
application based on common security traits. A policy
module is then automatically generated for the applica-
tion, which may then be further managed via system-
config-selinux.

No knowledge of the SELinux policy language is re-
quired. This tool is useful for rapidly generating policy
with broad confinement properties.

4.4 SEEdit

The SELinux Policy Editor (SEEdit) [27] is a graphical
tool which allows users to develop policy in a simpli-
fied policy language. Introduced by Hitachi Software in

5



2005, SEEdit utilizes pathname-based configuration and
is targeted at developing policy for embedded systems.

4.5 SETools

A powerful set of policy analysis tools has been devel-
oped by Tresys and packaged into the SETools [6] suite.
Included in the suite are utilities for analyzing SELinux
policy, analyzing audit messages and creating audit re-
ports, and verifying and examining policy.

4.6 CDS Framework Toolkit

The CDS Framework Toolkit [1] is a high-level tool for
designing SELinux policy for "cross-domain solutions"
(CDSs). CDSs are specialized guard systems for con-
trolling information flow between different security do-
mains.

While typically employed for sensitive government and
military use, the underlying principles of have more
general applications, such as in the case of a corporate
Internet gateway which filters email and other user traf-
fic. As SELinux is able to enforce critical processing
flow2, security policy can be used to ensure, for ex-
ample, that incoming email is always passed through a
virus checker and a spam filter.

The CDS Framework Toolkit utilizes a GUI and abstract
representation of the system, and does not require de-
tailed knowledge of SELinux policy on the part of the
user.

5 Networking

SELinux provides fine-grained controls over network
accesses at several layers of the networking stack. At
the socket layer, all socket system calls are mediated.
Specialized controls are implemented for critical net-
working protocols (such as Unix domain sockets), the
IP layer, and the interface layer.

Since the initial releases of SELinux, several aspects of
networking support have been reworked or newly im-
plemented.

2also referred to as an assured pipeline

5.1 Secmark

The first release of SELinux included rudimentary IP
layer controls for packet flow. An effort called Sec-
mark [25] was undertaken in 2006 to modernize the IP
layer controls, leveraging the rich firewalling capabili-
ties available in the Linux kernel.

With Secmark, iptables rules are used to label packets
based on attributes which can be determined from the
packet alone (e.g. destination port). Packet flow is then
mediated using these labels according to SELinux pol-
icy.

This allows the utilization of all available iptables
matches as selectors, as well as features such as con-
nection tracking (or "stateful inspection"). Use of the
latter leads to greatly simplified network packet policy.
A single rule can be used, for example, to permit the
flow of all traffic in a validated "established" or "related"
state, eliminating the need to explicitly allow (or ignore)
ephemeral port use, and to automatically handle multi-
connection protocols such as FTP.

The code for this has been merged upstream, although
distribution integration is not yet complete, as there is
currently an outstanding issue of how best to perform
the integration without clashing with current users of
iptables.

5.2 Labeled Networking

While Secmark provides local labeling of network traf-
fic, there is also a need for the ability to mediate traffic
based upon remote characteristics such as the security
context of the peer application. This is achieved by con-
veying security labels with the traffic as it transits the
network.

SELinux takes two approaches to this:

• Labeled IPSec

This essentially involves labeling IPSec security
associations (SAs) to implicitly label traffic car-
ried over those SAs. This was derived from earlier
Flask research [9], implemented for SELinux by
an IBM team [15], and further refined by Trusted
Computer Solutions for better MLS support and
improved usability.

6



• NetLabel

Legacy trusted systems utilize IP options to convey
security labels across the network. It is desirable
for SELinux to interoperate with these systems. A
flexible implementation based on the abandoned
CIPSO [14] standard has been developed and in-
tegrated into the kernel by HP.

All of the above network labeling schemes were de-
signed to be security framework agnostic, and are avail-
able for use by other security modules.

6 Memory Protection

Linux systems take a layered approach to security, to
provide "defense in depth", ensuring that security mea-
sures are implemented at every possible level. No single
measure can defeat all attacks, but many attacks can be
defeated by a combination of measures.

SELinux utilizes kernel-based mechanisms to confine
the behavior of userland applications. It is thus not de-
signed to protect directly against kernel bugs, nor certain
classes of application issues such as memory-based at-
tacks, although it can help confine the damage done by
such attacks.

Many distributions ship with mechanisms to protect
against memory-based attacks, such as support for non-
executable pages (NX) and glibc memory checks. In
some cases, applications may wish to override memory
checks (e.g. certain virtual machine interpreters), and
SELinux has been extended to allow these overrides to
be controlled by SELinux policy [11].

Enforcement of these memory checks via SELinux pol-
icy has led to the discovery of several applications which
were inadvertently performing dangerous memory oper-
ations. While initially causing inconvenience to users,
many of these applications were subsequently fixed,
while developer awareness of the underlying issues was
increased.

7 Security Evaluation and Accreditation

For some classes of government and military users, se-
curity certification is an important procurement require-
ment. The integration of SELinux made it possible

to have Linux certified to the highest level currently
achieved by mainstream operating systems.

In 2007, Red Hat Enterprise Linux version 5 in a server
configuration was certified under the Common Criteria
Evaluation and Validation Scheme (CCEVS) to Evalu-
ation Assurance Level 4 Augmented (EAL4+), against
the protection profiles:

• LSPP: Labeled Security Protection Profile

• RBACPP: Role Based Access Control Protection
Profile

• CAPP: Controlled Access Protection Profile (Au-
dit)

As CCEVS certifications include hardware, certification
was performed for both HP and IBM platforms. A simi-
lar certification is currently underway for SGI hardware.
EAL4+ is the highest assurance level likely achievable
without a specially designed operating system, while
LSPP is an updated equivalent of the earlier Trusted
Computer System Evaluation Criteria (TCSEC or "Or-
ange Book") B1 rating.

Several aspects of the certification are notable. It was
the first time that Linux itself was known to be subjected
to such a rigorous security validation process. Linux
has now become directly competitive in the marketplace
with existing "trusted" operating systems. An innovative
approach was taken such that the Linux certifications
were performed on the standard product line, rather than
on separately maintained versions. Also innovative was
the cooperative and open community certification effort,
which led to a pooling of resources between several dif-
ferent companies and organizations

The certification efforts also led to the development of
several enhancements to SELinux and Linux itself, such
as an overhaul of the Audit subsystem, and the intro-
duction of polyinstantiated directories via Linux names-
paces and the Pluggable Authentication Modules (PAM)
subsystem. Many of these certification-related develop-
ments have proven generally useful, with a notable ex-
ample being the introduction of Kiosk Mode (see section
12).

SELinux-based systems have also been accredited on a
per-system basis, independently of CCEVS. Details of
such accreditations are often not public, although a case

7



study was presented at the 2007 SELinux Symposium
where an SELinux-based system was developed to al-
low US Coast Guard Intelligence to consolidate access
to separate classified networks [16].

The Certifiable Linux Integration Platform (CLIP) [2]
project consists of specialized SELinux policy and sys-
tem configuration packages aimed at meeting rigorous
security requirements. For example, CLIP has been
used to help SELinux systems meet Director of Cen-
tral Intelligence Directive 6/3 at Protection Level 4, a
common requirement for government and military sys-
tems which handle Sensitive Compartmented Informa-
tion (SCI).

8 Performance and Scalability

The initial SELinux code release was not tuned for per-
formance. Increased SELinux adoption saw the contri-
bution of several enhancements aimed at improving per-
formance, scalability, and resource utilization.

Examples include:

• Utilizing Read Copy Update (RCU) [23] to remove
locking and atomic operations from critical per-
formance paths. In January 2005, patches were
merged upstream which dramatically increased
the scalability of the core SELinux kernel code.
Benchmarks run on 4-node 16-way NUMA system
indicated a 50% increase in memory bandwidth
and near-linear scheduler scalability.

• Calculating information on non-critical paths as
needed rather than ahead of time. Patches were
developed to perform more kernel access decision
calculations on the fly and also reduce the size of
related kernel structures. These changes, merged
in September 2005, resulted in savings of around
8 MB of kernel memory for targeted policy and
16MB for strict policy. Under Linux, kernel mem-
ory is not pagable and thus a particularly precious
resource.

• Better utilization of the Linux slab allocator [13].
The kernel objects which hold SELinux policy
rules were originally allocated via a generically-
sized slab class. In August 2004, a patch was
merged which implemented a custom slab class for
policy rules, leading to memory savings of 37% on
64-bit systems.

• Caching information rather than calculating it in
performance critical paths. Recent patches from
HP have introduced label caches for virtual entities
such as network addresses and ports, to avoid con-
sulting the kernel policy database for labels at each
access.

• Optimized revalidation. Under SELinux, read and
write permissions for an open file are revalidated
on each access. This is to ensure correct mediation
even if there have been labeling or policy changes
since the initial access. In September 2007, patches
were merged which ensured that such revalidation
would only occur if it was known that labels or pol-
icy had actually changed. Benchmarking indicates
that overhead for read and write was reduced by a
few percent on Pentium-based systems and around
10% on the SuperH platform.

Many of the performance and resource utilization en-
hancements were contributed by developers from the
embedded community.

9 Mitigation

A significant goal of SELinux is to mitigate threats aris-
ing from flaws in applications. Programming flaws are
relatively common and effectively impossible to pre-
vent entirely. Some flaws, especially those present in
network-facing services and in privileged applications,
may be exploited by malicious attacks. Such attacks can
lead to disclosure of private information, corruption or
destruction of valuable data, abuse of resources (e.g. hi-
jacking a system to send spam), and the staging of more
sophisticated attacks.

SELinux policy may be used to confine an application to
ensure that it is capable of performing only the accesses
needed for normal operation. This is an application of
the principle of least privilege, which ensures that if an
application is compromised or even malfunctions, that
its actions will be limited to those it was supposed to be
performing.

For example, if a web server was vulnerable to remote
attack, an exploit may attempt to publish sensitive infor-
mation from user directories or to send spam. With an
appropriate SELinux policy, such actions would not be
permitted, and these threats would be mitigated.

8



Several cases of successful threat mitigation with
SELinux have been documented, where systems run-
ning with SELinux enabled were protected against real
vulnerabilities and exploits [22].

These cases have demonstrated the value of deploying
SELinux for general use.

10 Extending SELinux

The SELinux architecture has been extended beyond the
Linux kernel to other areas of the system, and to other
operating systems. Such efforts benefit from the abil-
ity to re-use existing SELinux components, such as the
policy framework, code, and tools.

10.1 Desktop

Extending SELinux to the desktop environment is a sig-
nificant undertaking. The modern desktop is made up of
many layers and components, all of which need to be an-
alyzed and understood in terms of information flow. At
each layer, an SELinux policy model needs to be devel-
oped, and mediation hooks inserted into the code. This
area has seen steady progress in parallel with the inte-
gration of SELinux into the base operating system.

The X Access Control Extension (XACE) [32] is a plug-
gable mandatory security framework for the X server,
developed by the NSA, and merged into the upstream
X.org tree. A Flask/TE module for XACE called
XSELinux was also developed and merged upstream.

Work has also begun on securing the GNOME desktop
environment by extending the SELinux architecture to
GConf (the GNOME configuration system) [8] and D-
BUS (the freedesktop.org messaging system). The D-
BUS work has been merged upstream, while the GConf
extensions are expected to remain in a prototype stage
until further core desktop security infrastructure is in
place.

A proof of concept project called Imsep [33] demon-
strated a promising approach to protecting desktop ap-
plications by separating image processing functions into
a separate security domain.

10.2 Database

SE-PostgreSQL [5], an extension of the SELinux archi-
tecture to the PostgreSQL relational database system,
was released in September 2007. It features security
labeling of data at the row and column levels, with en-
forcement of mandatory access control for authorized
clients.

This importantly allows security policy to be uniformly
applied to data at the OS level and within the database,
where previously, fine-grained mandatory control was
lost once information entered the database.

10.3 Virtualization

Efforts have been made by the NSA to integrate a flexi-
ble MAC scheme into the Xen hypervisor. Currently, the
Xen Security Modules (XSM) project [10] implements a
pluggable hook framework within the hypervisor, allow-
ing different security models to be selected. An existing
MAC scheme for Xen called Access Control Module
(ACM) has been ported to XSM, and a Flask/TE module
has been developed based on SELinux principles.

XSM removes security model logic from the core Xen
code, and provides security model configuration flex-
ibility. Hooks are implemented to allow mediation
of privileged hypercalls, inter-domain communication
(e.g. event channels and grant tables), and access to sys-
tem resources by domains. An aim of this work is to
increase robustness and assurance by decomposing the
highly privileged Dom0 into separate domains. Inter-
actions between these domains may then be controlled
with fine-grained mandatory policy.

XSM and the Flask/TE module were merged into ver-
sion 3.2 of the mainline Xen release.

10.4 Storage

While many local filesystems support SELinux via ex-
tended attributes, support for remote filesystems is rudi-
mentary. When a remote filesystem is mounted, a
policy-defined default security label may be assigned to
all files on the mount; or in the case of NFS, the label
may be specified by the administrator as a mount option.
This provides coarse protection, although fine-grained
labeling is not available; remote labels if they exist are

9



ignored; and there is no way to remotely set labels on
files. There is also no awareness of whether the remote
system is performing any SELinux enforcement.

The Labeled NFS project [3] was started in 2007 to
address these issues. Thus far, detailed requirements
based on previous similar projects have been gathered,
while proof of concept code has been published and re-
viewed by Linux NFS developers. A key challenge of
the project is to accommodate the needs of multiple up-
stream groups including the IETF, Linux NFS develop-
ers and core kernel maintainers.

Labeled NFS was presented by the NSA at the IETF
71 meeting in March 2008. RFC documents are being
developed with the aim of establishing Labeled NFS as
an Internet standard, while work is continuing on the
prototype Linux code.

10.5 Beyond Linux

Several non-Linux operating systems have adopted, or
are in the process of adopting, Flask/TE technology.

FreeBSD led the way in this area with the SE-BSD
project, which ported the SELinux architecture to its
TrustedBSD framework. This work was then ported to
Apple’s Darwin operating system, as SE-Darwin. These
projects are not currently incorporated into their respec-
tive mainline trees.

Recently, the OpenSolaris project announced Flexible
Mandatory Access Control (FMAC) [4], an effort to in-
corporate the Flask/TE architecture into their mainline
operating system. This project is also expected to lever-
age the Flask/TE port to Xen, and to implement Labeled
NFS and Labeled IPSec.

The FMAC project presents an exciting opportunity for
Linux and OpenSolaris to offer compatible mandatory
security to users. A significant potential benefit is in-
creased overall adoption of mandatory security.

11 Community

As discussed in section 1.2, the SELinux project
emerged from academic and government research ef-
forts. As SELinux has been integrated into Linux distri-
butions and made more generally usable, the SELinux
community has expanded in both size and scope.

11.1 SELinux Symposium

The SELinux Symposium (2005-2007) has been of pro-
found importance to the project, bringing together core
developers, security researchers and significant early
adopters.

A small, invite-only developer summit, arising from
earlier informal meetings, was typically held after the
main symposium, driving much of the direction of de-
velopment for each year. The developer summit is now
planned to be a separate, open event aimed at engaging
the wider community.

11.2 Online Resources

The nsa.gov site remains the primary point of focus for
the project, hosting many critical documents, the main
mailing list, and historical core code releases.

Other SELinux sites have been deployed in recent years:

• selinuxnews.org - project news and events, and an
SELinux community blog aggregator.

• oss.tresys.com - hosts several open source SELinux
projects developed by Tresys.

• selinuxproject.org - a wiki hosting miscellaneous
developer and project resources.

Distributions with SELinux support typically also uti-
lize mailing lists and web sites to provide resources to
developers and users. Links to these may be found at the
SELinux for Distributions site: selinux.sourceforge.net.

Many seminal SELinux papers and presentations are
archived at the SELinux Symposium web site: selinux-
symposium.org.

SELinux kernel development is now hosted in public
repositories on kernel.org.

11.3 Distributions

While Fedora-based distributions have been at the fore-
front of SELinux development in recent years, SELinux
integration efforts have continued in other distributions.

10



Gentoo, Debian and Ubuntu all have security hardening
efforts involving SELinux integration into their mainline
distribution releases.

SELinux was incorporated into the mainline release of
Debian 4.0 ("Etch"). Previously, SELinux packages for
Debian were only available from separate repositories.

As of version 8.04, Ubuntu includes full support for
SELinux in its server release.

11.4 Adoption

SELinux was always intended to be adaptable to a wide
variety of usage scenarios, and to provide useful pro-
tection in the general case. Initially, serious adop-
tion appeared to be focused around traditional higher-
assurance users such as government and military orga-
nizations.

With the integration of SELinux into general purpose,
mainstream distributions, wider and more general adop-
tion is now being seen.

There has been growing interest from industry sectors
with critical security needs, such as finance and health-
care.

Consumer electronics is significant area of adoption
which was not perhaps originally anticipated. As con-
sumer devices become more sophisticated and con-
nected, the nature and scope of their security require-
ments is markedly increased. A flexible MAC scheme
such as SELinux often proves useful in this area, as se-
curity policy can be tailored to the specific function of
each product, leading to tighter security than is typically
possible for a general purpose system. There is poten-
tial to increase the time to patch if a vulnerability is dis-
covered which is mitigated by SELinux policy, perhaps
delaying the update until another critical update is re-
quired. Updating software in fielded devices can be ex-
pensive and risky.

In terms of general purpose adoption, statistics gathered
by the Fedora project since the release of Fedora 8 ten-
tatively indicate that a significant majority of users have
SELinux enabled. Recent advances in usability and in-
creased awareness of the value of mandatory security
are likely factors here.

12 Current Developments

At the time of writing, an area of active development is
in confining users. Under targeted policy, general users
on an SELinux system are unconfined, with a focus on
protecting against external threats. With the release of
Fedora 8, a facility called Kiosk Mode [26] (or xguest)
was introduced. This allows an anonymous user to ac-
cess a desktop session in limited but useful manner, such
as to only allow web browsing. The security goal in this
case is to protect the system from the user. Kiosk Mode
may be useful for providing public access to desktop and
Internet applications in varied settings, such as libraries,
cafes, conferences, product demonstrations, and train-
ing sessions.

Another current development is permissive domains, a
mechanism to allow permissive mode to be invoked only
for specific applications. SELinux enforcement may be
disabled for a selected application, say, to debug its pol-
icy, while maintaining SELinux enforcement for the rest
of the system.

13 Future Work

Areas of ongoing and future work in the SELinux
project include:

• Continued extension of SELinux architecture to the
desktop infrastructure and major applications. The
Imsep work mentioned in section 10.1 looks to be a
promising model for general separation of security
domains within applications.

• Working with the IETF to standardize Labeled
NFS, and with the Linux community to have it ac-
cepted into the mainline kernel.

• Ongoing performance improvement, and efforts to
further reduce the memory footprint of SELinux.

• Further simplification of policy, perhaps through
the development of a higher-level policy language
with idioms more familiar to Linux administrators.

• Support for more virtualization models, including
Linux as hypervisor (e.g. KVM) and containers.

• Improved support for third party distribution of
policy modules, such as the case of cross-building
RPMs on systems with a conflicting host policy.

11



• Continued usability improvements for end users,
administrators and developers.

• Better documentation.

14 Conclusion

Following the transition of SELinux from a research
project into a deployable, community-driven technol-
ogy, there has been rapid and intense growth in its func-
tion, usability and adoption.

The SELinux project has pioneered the practical appli-
cation of mandatory security in general purpose com-
puting, utilizing a flexible, open approach to both the
technology and the execution of the project itself.

While still a work in progress, SELinux has matured to
the point where it is able to provide useful mandatory
protection to general users, while also meeting higher
assurance goals in critical security environments.

Other operating systems have begun adopting concepts
innovated by the SELinux project, such as incorporating
mandatory security into mainline products and making
it a standard feature enabled by default.

It is hoped that SELinux will continue to both provide
and foster stronger computer security for users of the
continually evolving globally networked environment.

15 Acknowledgements

Thanks to Stephen Smalley, Dan Walsh, Karl MacMil-
lan and Christopher PeBenito for providing valuable
feedback during the preparation of this paper.

References

[1] CDS Framework Toolkit. http://oss.
tresys.com/projects/cdsframework.

[2] Certifiable Linux Integration Platform. http:
//oss.tresys.com/projects/clip.

[3] Labeled NFS.
http://www.selinuxproject.org/
page/Labeled_NFS.

[4] OpenSolaris Project: Flexible Mandatory Access
Control. http://www.opensolaris.org/
os/project/fmac/.

[5] Security Enhanced PostgreSQL.
http://code.google.com/p/sepgsql/.

[6] SETools. http:
//oss.tresys.com/projects/setools.

[7] W. E. Boebert and R. Y. Kain. A Practical
Alternative to Hierarchical Integrity Policies.
Proceedings of the 8th National Computer
Security Conference, 1985.

[8] J. Carter. Using GConf as an Example of How to
Create an Userspace Object Manager.
Proceedings of the 3rd Annual Security Enhanced
Linux Symposium, March 2007.

[9] Ajaya Chitturi. Implementing Mandatory
Network Security in a Policy-flexible System.
Master’s thesis.
http://www.cs.utah.edu/flux/
papers/ajay-thesis-abs.html.

[10] G. Coker. Xen Security Modules (slides).
http://xen.org/files/xensummit_4/
xsm-summit-041707_Coker.pdf, April
2007.

[11] U. Drepper. SELinux Memory Protection Tests.
http://people.redhat.com/drepper/
selinux-mem.html, April 2006.

[12] D. Ferraiolo and R. Kuhn. Role-Based Access
Controls. Proceedings of the 15th National
Computer Security Conference, October 1992.

[13] Brad Fitzgibbons. The Linux Slab Allocator,
October 2000.

[14] IETF CIPSO Working Group. Commercial IP
Security Option (CIPSO 2.2), July 1992.

[15] Trent Jaeger, Kevin Butler, David H. King, Serge
Hallyn, Joy Latten, and Xiaolan Zhang.
Leveraging IPsec for Mandatory Access Control
of Across Systems. Proceedings of the 2nd
International Conference on Security and Privacy
in Communication Networks, August 2006.

[16] G. Kamis. US Coast Guard / NetTop2 - Thin
Client Implementation (slides).
http://selinux-symposium.org/
2007/slides/08-tcs.pdf, March 2007.

12



[17] Donald E. Knuth. Literate programming. Center
for the Study of Language and Information,
Stanford, CA, USA, 1992.

[18] P. Loscocco and S. Smalley. Meeting Critical
Security Objectives with Security-Enhanced
Linux. Proceedings of the 2001 Ottawa Linux
Symposium, July 2001.

[19] P. Loscocco, S. Smalley, P. Muckelbauer,
R. Taylor, S. Turner, and J. Farrell. The
Inevitability of Failure: The Flawed Assumption
of Security in Modern Computing Environments.
Proceedings of the 21st National Information
Systems Security Conference, October 1998.
http://www.cs.utah.edu/flux/
papers/ajay-thesis-abs.html.

[20] Karl MacMillan. Core Policy Management
Infrastructure for SELinux, March 2005.

[21] Karl MacMillan, Joshua Brindle, Frank Mayer,
Dave Caplan, and Jason Tang. Design and
Implementation of the SELinux Policy
Management Server. Proceedings of the 2nd
Annual Security Enhanced Linux Symposium,
March 2006.

[22] D. Marti. A seatbelt for server software: SELinux
blocks real-world exploits, February 2008.
http://www.linuxworld.com/news/
2008/022408-selinux.html.

[23] Paul E. McKenney, Jonathan Appavoo, Andi
Kleen, Orran Krieger, Rusty Russell, Dipankar
Sarma, and Maneesh Soni. Read-Copy Update. In
Ottawa Linux Symposium, July 2001.

[24] J. Morris. A Brief Introduction to Multi-Category
Security. http://james-morris.
livejournal.com/5583.html, September
2005.

[25] J. Morris. New Secmark-based Controls for
SELinux. http://james-morris.
livejournal.com/11010.html, May
2006.

[26] J. Morris. Using SELinux Kiosk Mode in Fedora
8. http://james-morris.
livejournal.com/25640.html, February
2008.

[27] Y. Nakamura. Simplifying Policy Management
with SELinux Policy Editor. March 2005.

[28] C. PeBenito, F. Mayer, and K. MacMillan.
Reference Policy for Security Enhanced Linux.
Proceedings of the 2nd Annual Security Enhanced
Linux Symposium, February 2006.

[29] R. Smith. Introduction to Multilevel Security.
http://www.cs.stthomas.edu/
faculty/resmith/r/mls/index.html,
2005.

[30] R. Spencer, S. Smalley, P. Loscocco, M. Hibler,
D. Andersen, and J. Lepreau. The Flask Security
Architecture: System Support for Diverse
Security Policies. Proceedings of the Eighth
USENIX Security Symposium, August 1999.

[31] D. Walsh. Creating Loadable Modules with
Audit2Allow. http:
//fedoraproject.org/wiki/SELinux/
LoadableModules/Audit2allow,
February 2006.

[32] E. Walsh. Application of the Flask Architecture to
the X Window System Server. Proceedings of the
3rd Annual Security Enhanced Linux Symposium,
March 2007.

[33] C. Walters. Towards a Least Privilege Desktop
(presentation slides), March 2005.

[34] C. Wright, C. Cowan, J. Morris, S. Smalley, and
G. Kroah-Hartman. Linux Security Modules:
General Security Support for the Linux Kernel.
USENIX Security Conference, August 2002.

13


