Overview of NSA Security
Enhanced Linux

James Morris
jmorris@namei.org

FOSS.IN/2005
Bangalore, India
What is SELinux?

- Fine-grained Mandatory Access Control (MAC)
- Strongly separated domains
- Provides confinement of:
 - malicious code
 - flawed code
 - user error/intention
- Enforces least privilege
- Protects integrity
- Flexible policy
Discretionary Access Control (DAC)

• Traditional Unix security model

• DAC is inadequate:
 – Decisions only based on user identity and ownership
 – No protection against malicious or flawed software
 – Each user has complete discretion over own objects
 – Only two major categories of users: admin and other
 – Coarse-grained and too much privilege
 – Unbounded privilege escalation
Mandatory Access Control (MAC)

- “Missing link” of security in general OSs
- Primary features:
 - Administratively-set security policy
 - Control over all processes and objects
 - Decisions based on all security-relevant information
MAC Implementation

• Traditionally inflexible, maps poorly to general case

• More than just Multilevel Security (MLS):
 − Enforce integrity, least privilege

• Generalized MAC via Type Enforcement (TE)

• Transparent to applications

• Decompose administrator role

• Policy flexibility
SELinux Framework

• Composition of several security models
 - Role-Based Access Control (RBAC)
 - Type Enforcement (TE)
 - Optional Multilevel Security (MLS)
• Separation of mechanism and policy
• Can support further models as required
Type Enforcement (TE)

- Domains for processes, types for objects
- Control access to objects by domains
- Control interactions between domains
- Control entry into domains
- Bind domains to code
Types

• Attributes assigned to objects and domains
• Things of the same type are security-equivalent
• Examples:
 - httpd_t (apache execution domain)
 - httpd_log_t (apache log files)
 - httpd_config_t (apache configuration files)
 - httpd_sys_content_t (web content)
Type Enforcement Rules

• TE rules defined in policy

• Include object labeling, and access control rules

• Examples:

 · allow httpd_t httpd_log_t:file { create ioctl read getattr lock append };

 · allow httpd_t httpd_config_t:file { read getattr lock ioctl };

 · allow httpd_t httpd_sys_content_t:file { read getattr lock ioctl };

Role Based Access Control (RBAC)

- Roles are attributes assigned to domains, e.g.
 - sysadm_r
 - system_r
 - user_r
- Specifies domains that can be entered by each role
- Specifies roles that are authorized for each user
- Initial domain associated with each user role
Current Status

- Merged into upstream kernel during 2.5 series
- Adopted by several distributions
- Targeted policy for network facing services
- Possibly millions of users
- Basic tools
Current Development

• MLS for production use

• Certifications: LSPP, RBACPP at EAL4+

• Multi-category Security (MCS)

• Reference policy

• Modular policy
Future Developments & Participation

- Better tools
 - Policy development and analysis
- High level policy language
- Distributed security management
 - User management, policy distribution, logging
- Desktop
- Application-level
More Future Developments...

- Networked filesystems
- Hardware security (TPM):
 - Verified boot
 - Integrity verification
 - Remote attestation
 - Trusted path
- Virtualization
- Cryptographic policy
Resources

• NSA SELinux Pages
 http://www.nsa.gov/selinux/

• SELinux for Distributions
 http://selinux.sourceforge.net/

• Mailing Lists (see above)

• IRC: irc.freenode.net #selinux

• SELinux Symposium 2006 (Feb/Mar)
 http://www.selinux-symposium.org/
Acknowledgments

• Much of the source material for these slides was derived from existing NSA presentations:
 – http://www.nsa.gov/selinux/info/docs.cfm