

Linux Kernel Security
Overview

Kernel Conference Australia
Brisbane, 2009

James Morris
jmorris@namei.org

Introduction

Historical Background

● Linux started out with traditional Unix security
– Discretionary Access Control (DAC)

● Security has been enhanced, but is constrained
by original Unix design, POSIX etc.

● Approach is continual retrofit of newer security
schemes, rather than fundamental redesign

“The first fact to face is that UNIX
was not developed with security, in

any realistic sense, in mind; this
fact alone guarantees a vast

number of holes.”

Dennis Ritchie, “On the Security of UNIX”, 1979

DAC

● Simple and quite effective, but inadequate for
modern environment:
– Does not protect against flawed or malicious code

● Linux implementation stems from traditional
Unix:
– User and group IDs

– User/group/other + read/write/execute

– User controls own policy

– Superuser can violate policy

“It must be recognized that the mere
notion of a super-user is a

theoretical, and usually practical,
blemish on any protection scheme.”

Ibid.

Extended DAC

● POSIX Capabilities (privileges)
– Process-based since Linux kernel v2.2

● Limited usefulness

– File-based support relatively recent (v2.6.24)
● May help eliminate setuid root binaries

● Access Control Lists (ACLs)
– Based on abandoned POSIX spec

– Uses extended attributes API

Linux Namespaces

● File system namespaces introduced in 2000,
derived from Plan 9.
– Not used much until mount propagation provided

more flexibility (e.g. shared RO “/”)

– Mounts private by default

● Syscalls unshare(2) and clone(2) allow control
over sharing of resources

● Provides good isolation between processes
● PAM integration
● Used w/ SELinux in kiosk mode

Network Access Control

● Netfilter
– Packet filtering and mangling framework

– API allows kernel applications to register by
protocol and packet flow point

● IPTables
– Extensible packet filter for IPv4/IPv6

– Connection tracking (stateful inspection)

– NAT

– Hundreds of contributed matches and targets

Missing Link

● Seminal 1998 NSA paper: The Inevitability of
Failure describes additional security
requirements:
– Mandatory security

– Trusted / protected path

– Assurance

● Difficult work, but we are getting there...

Cryptography

● Historical US export limitations prevented
merge of comprehensive cryptography
– External “kerneli” tree had a crypto API

– Other projects added own crypto, e.g. FreeSWAN

● Some allowed uses:
– Hashing

– RNG

Cryptography

● Crypto API developed rapidly for native IPSec
implementation, made it into 2.6 kernel

● Scatterlist API
● Initially synchronous w/ support for basic cipher

modes, digests and compressors
● Dynamic crypto algorithm module loading
● Now significantly evolved w/ async, hardware

support, ASM, many algorithms & modes

Disk Encryption: DM-Crypt

● Operates transparently at block layer

● Key management with LUKS

● Default is AES-128/SHA-256

● Very nice integration in Fedora; try it!

Disk Encryption: ecryptfs

● Stacked filesystem encryption at VFS layer

● Per-object encryption

● Extensible key management

● Cryptographic metadata stored w/ objects,
allows them to be moved to different hosts

Network Encryption: IPSec

● Supports IPv4 and IPv6
● Implemented via generic transform (xfrm)

framework:
– xfrm stack applied to packet based on policy db

● xfrms include: ESP, AH, IPComp, MIP, IPIP
● Utilizes native Netlink sockets for scalability
● Also supports PF_KEY

Memory Protection

● Address Space Layout Randomization (ASLR)
● NX (No eXecute) bit support where available in

hardware or via emulation
● GCC stack smashing protector
● /dev/mem & null pointer restrictions
● MAC policy can be applied via SELinux:

– execheap, execmem, execmod, execstack

Kernel Vulnerabilities

● Note that kernel vulnerabilities may allow
attackers to bypass kernel-based security
mechanisms.

● See “Linux Kernel Heap Tampering Detection”,
in Phrack 66 for a detailed discussion of the
topic.

Linux Security Modules (LSM)

● Framework for integrating access control
schemes

● Hooks located at security-critical points in the
kernel, pass security-relevant information to
LSM module, which can veto the operation

● Avoids races when making security decisions
● Restrictive interface: can only further confine

access, not loosen it

SELinux

● Flexible fine-grained MAC scheme w/ least
privilege, confidentiality, integrity, isolation,
information flow control; exploit containment

● Composition of multiple security models under
single analyzable policy

● Currently ships with: Type Enforcement, RBAC
and MLS/MCS

● Clean separation of mechanism and policy to
meet very wide range of usage scenarios

Simplified Mandatory Access
Control Kernel (SMACK)

● Simple labeling of subjects and objects to
provide flexible MAC

● System labels define hierarchical limits
● Admin-defined labels can be any short string
● Policy is written as triples:

Subject Object [–rwxa]

AppArmor

● Not currently in kernel
● Path name access control scheme to confine

applications
● Aims to solve security usability by expressing

policy with a familiar abstractions, e.g.:
– File access controls defined with path names and

names of common operations

– POSIX capabilities described by name

TOMOYO

● Path-based MAC scheme developed by NTT
research

● Aims to solve security usability with automatic
real-time policy generation

● Enforces previously observed behavior in
learning mode

● Domains are trees of process invocation
● Rules apply to domains

Labeled Networking

● NetLabel
– CIPSO

● Legacy labeling using IP options

– IPSec
● Labeling of Security Associations

● Secmark
– Utilizes iptables

– Generic labeling (SMACK & SELinux use it)

Network File Systems

● Labeled NFS
– NFSv4 extension

– Prototype code

– Also need to extend RPC security

– IETF process ongoing

● NFS ACLs
– Support for Linux ACLs and NFSv4 ACLS

● See talk by Greg Banks at LCA

Anti-Malware

● Good userspace solutions
● People still want kernel scanning
● fsnotify

– Generalized file notification framework

– Consolidate dnotify & fsnotify

– Useful for HSM

● TALPA
– File access scanning API for AV modules

Integrity & Platform Security

● TPM (Trusted Platform Module)
– Cryptographic processor, RNG, storage for keys

and measurements

● IMA (Integrity Measurement Architecture)
– Static integrity verification of code

● TXT (Intel Trusted Execution Technology)
– DRTM (Dynamic Root of Trust Measurement);

trusted launch, hardware security enhancements

● VT-d (device virtualization)
– Needed to secure IO devices

Audit

● Developed for certification (e.g. CAPP)
● Audit framework generates events:

– User sessions & configuration changes

– Syscalls

– LSM decisions

● Useful for forensics and deterrence
● SELinux, SMACK et al use it for detailed

reporting
● Netlink API for audit daemon, IDS

Seccomp

● Secure computing mode
– Extremely lightweight sandboxing for untrusted

code

– Application enters mode with fixed set of restricted
syscalls (read, write, exit, sigreturn)

● Proposal to convert into generic syscall filter
– Historically problematic area

High Level View

● State of the art: Fedora 11
– Kiosk Mode as example

● Known mitigations
● Certifications

– RHEL: LSPP, CAPP, RBACPP at EAL4+

– Not a separate product, all upstream and open

● Security features standard and generalized

Future Directions

● Continued refinement and hardening
– Working towards “Inevitability” goals

● Extensible models
– Consistent policy for entire computing environment

● Cloud Computing

Challenges

● Multiple security models hindering adoption

● Convincing people of the value of security:
– enable features

– report problems

– help improve usability

Resources

● Linux Kernel Security Wiki

● LSM Mailing List

● LWN Security page

Questions?

Useful URLs

Kernel Security Wiki
http://security.wiki.kernel.org/

LSM Mailing List
http://vger.kernel.org/vger­lists.html#linux­security­module

LWN Security Page
http://lwn.net/Security/

“The Inevitability of Failure: The Flawed Assumption of Security in Modern
Computing Environments”

http://csrc.nist.gov/nissc/1998/proceedings/paperF1.pdf

LSM Usenix Paper
http://www.usenix.org/event/sec02/wright.html

Kernel Memory Protection
http://lwn.net/Articles/329787/

Linux Security Model Comparison
http://tomoyo.sourceforge.jp/wiki­e/?WhatIs#comparison

http://lwn.net/Security/
http://lwn.net/Articles/329787/
file:///home/jmorris/stuff/projects/kca-2009/
file:///home/jmorris/stuff/projects/kca-2009/

Useful URLs ...
SELinux

http://selinuxproject.org/
“Have You Driven an SELinux Lately?” (OLS paper on current state)

http://namei.org/ols­2008­selinux­paper.pdf
“Anatomy of Fedora Kiosk Mode”

http://namei.org/presentations/fedora­kiosk­mode­foss­my­2008.pdf
“SELinux Memory Protection Tests”

http://people.redhat.com/drepper/selinux­mem.html
“A seatbelt for server software: SELinux blocks real­world exploits”

http://www.linuxworld.com/news/2008/022408­selinux.html

SMACK
http://schaufler­ca.com/

AppArmor
http://en.opensuse.org/Apparmor

TOMOYO
http://tomoyo.sourceforge.jp/

“POSIX file capabilities: Parceling the power of root”
http://www.ibm.com/developerworks/library/l­posixcap.html

“POSIX Access Control Lists on Linux”
http://www.suse.de/~agruen/acl/linux­acls/online/

http://namei.org/presentations/fedora-kiosk-mode-foss-my-2008.pdf
http://www.linuxworld.com/news/2008/022408-selinux.html
http://www.ibm.com/developerworks/library/l-posixcap.html
http://www.suse.de/~agruen/acl/linux-acls/online/
file:///home/jmorris/stuff/projects/kca-2009/
file:///home/jmorris/stuff/projects/kca-2009/
file:///home/jmorris/stuff/projects/kca-2009/
file:///home/jmorris/stuff/projects/kca-2009/

Useful URLs ...
"Implementing Native NFSv4 ACLs in Linux"

http://lca2009.linux.org.au/slides/79.tar.gz

“Applying mount namespaces”
http://www.ibm.com/developerworks/linux/library/l­mount­namespaces.html

“Disk encryption in Fedora: Past, present and future”
http://is.gd/16012

“Limiting buffer overflows with ExecShield” (2005)
http://www.redhat.com/magazine/009jul05/features/execshield/

“Linux Kernel Heap Tampering Detection”
http://phrack.org/issues.html?issue=66&id=15#article

“System integrity in Linux”
http://lwn.net/Articles/309441/

“Linux kernel integrity measurement using contextual inspection” (LKIM)
http://portal.acm.org/citation.cfm?id=1314354.1314362

Intel TXT Site
http://www.intel.com/technology/security/

IBM TCPA Resources
 http://www.research.ibm.com/gsal/tcpa/tcpa_rebuttal.pdf

Invisible Things Labs
 http://theinvisiblethings.blogspot.com/

http://lwn.net/Articles/309441/
http://portal.acm.org/citation.cfm?id=1314354.1314362
http://www.intel.com/technology/security/
file:///home/jmorris/stuff/projects/kca-2009/
file:///home/jmorris/stuff/projects/kca-2009/
file:///home/jmorris/stuff/projects/kca-2009/

 1

Linux Kernel Security
Overview

Kernel Conference Australia
Brisbane, 2009

James Morris
jmorris@namei.org

 2

Introduction

- Discuss scope and purpose of talk:
 - Provide a high-level overview of Linux kernel security
 - Cover significant security subsystems
 - Historical background and rationale
 - Development model & (lack of) overall design
 - Security has been retrofitted
 - Pros and cons

 - Understanding of why, not just how
 - Build understanding of current system and directions
 - Useful for developers, admins, researchers etc. as a

starting point
- Also only talking about in-tree unless otherwise noted
- The scope is kernel security: this does not cover

general Linux security, which needs a large book!

 3

Historical Background

● Linux started out with traditional Unix security
– Discretionary Access Control (DAC)

● Security has been enhanced, but is constrained
by original Unix design, POSIX etc.

● Approach is continual retrofit of newer security
schemes, rather than fundamental redesign

- Llinux security constrained by these factors, can’t re-
design / break userland

 4

“The first fact to face is that UNIX
was not developed with security, in

any realistic sense, in mind; this
fact alone guarantees a vast

number of holes.”

Dennis Ritchie, “On the Security of UNIX”, 1979

- There are references on this back to at least 1975...

 5

DAC

● Simple and quite effective, but inadequate for
modern environment:
– Does not protect against flawed or malicious code

● Linux implementation stems from traditional
Unix:
– User and group IDs
– User/group/other + read/write/execute
– User controls own policy
– Superuser can violate policy

- Unix DAC has been very successful due to its
simplicity (although still trips people up...).

- “root” is allowed to violate security policy
- Basically: all or self security w/ abbreviated ACLs
- Not good enough because:

- ref: NSA paper “The Inevitability of a failure”
 - Consider that in practice, all software has bugs;

some of those bugs may be security issues,
therefore it is prudent (and historically accurate) to
assume all software has security bugs; DAC simply
cannot provide effective protection as the security
policy is controlled by the flawed software!

- People assume MAC means “trusted systems” and
that they don’t need it; MAC can and has been
generalized....

 6

“It must be recognized that the mere
notion of a super-user is a

theoretical, and usually practical,
blemish on any protection scheme.”

Ibid.

- This was recognized as a problem 30 years ago!

 7

Extended DAC

● POSIX Capabilities (privileges)
– Process-based since Linux kernel v2.2

● Limited usefulness

– File-based support relatively recent (v2.6.24)
● May help eliminate setuid root binaries

● Access Control Lists (ACLs)
– Based on abandoned POSIX spec
– Uses extended attributes API

- Let’s solve DAC by... adding more!
- Proc caps have had some use w/ sendmail & ntpd
- Useful as annotations, has had some limited use

(sendmail, ntpd), also involved in security issue
- File caps much more useful, but still to see distro

adoption
- ACLs much more fine-grained and powerful than Unix

perms, also subtle and complex; many different
implementations

- See paper by Andreas Grünbacher
 also LCA slides on NFS ACLs by Greg Banks
- Capabilities not sufficient fundamentally: don’t take

object security into account; fixed security model re.
Inheritance & propagation which hinders least
privilege; don’t protect trustworthy app from
untrusted input (no information flow control!)

- setuid becoming less of an issue now than DBUS,
which needs MAC

 8

Linux Namespaces

● File system namespaces introduced in 2000,
derived from Plan 9.
– Not used much until mount propagation provided

more flexibility (e.g. shared RO “/”)
– Mounts private by default

● Syscalls unshare(2) and clone(2) allow control
over sharing of resources

● Provides good isolation between processes
● PAM integration
● Used w/ SELinux in kiosk mode

- Similar in concept to Solaris zones; also only provide
isolation, which is useful, but also need to control
sharing, provide protection inside container and
manage entire system securely.

- bind mounts allow mount to appear in different places
with different attributes, e.g. ro mount of /, private
mount of $HOME & $TMP, with tmpfs.

- This can be managed manually, but is better done
with PAM integration (e.g. pam_namespace)

- Was also developed/used for LSPP certification
(MLDs / polyinstantantiation)

- Refer to kiosk mode anatomy slides
- Lots of ongoing work with namespaces and

containers
- Demo kiosk mode?

 9

Network Access Control

● Netfilter
– Packet filtering and mangling framework
– API allows kernel applications to register by

protocol and packet flow point

● IPTables
– Extensible packet filter for IPv4/IPv6
– Connection tracking (stateful inspection)
– NAT
– Hundreds of contributed matches and targets

- Several generations of packet filtering prior to this:
ipfw, ipchains

- Generalization, consolidation of packet flow
- Highly pluggable and extensible design
- Netfilter could support other packet filters, some

efforts in this area, not mainlined
- Netfilter implemented at network layer, generic

support for L3 protocols
- iptables plugins support many IP-based protocols,

e.g. FTP + conntrack
- Also have bridging support with similar framework
- Firewalls are not enough alone: they’re too far from

the host systems & very coarse granularity (see
Inevitability paper).

 10

Missing Link

● Seminal 1998 NSA paper: The Inevitability of
Failure describes additional security
requirements:
– Mandatory security
– Trusted / protected path
– Assurance

● Difficult work, but we are getting there...

- Trusted path is a mechanism which provides
confidence that: user is interacting with trusted
application (trusted as in, trusted to perform the
desired function, e.g. login); trusted app is interaction
with actual user; also requires protection of
communication channel

- Protected path is a generalization of trusted path;
where all endpoints communicate via mutually
authenticated channels (this can be extended to the
network); e.g. prevent impersonation of
cryptographic token invocation & security bypass in
general

- Mandatory security -> MAC (SELinux etc), MIC, MCP
(cf. Gutmann)

- Assurance: the most difficult; can include
certifications, code audit etc.; FOSS improves
assurance by providing source to users for
verification

- Note that firewalls etc. depend on this to be
trustworthy themselves!

 11

Cryptography

● Historical US export limitations prevented
merge of comprehensive cryptography
– External “kerneli” tree had a crypto API
– Other projects added own crypto, e.g. FreeSWAN

● Some allowed uses:
– Hashing
– RNG

- The crypto export restrictions had the effect of
preventing the merge; it would have caused
enormous problems for linux distribution

- Hashing was not seen as being able to provide
confidentiality, so has been present in the kernel for
ages

- Changes to the laws allowed export with notification
- Note that crypto is not security (older common

viewpoint); it is a component of security which
requires a secure OS to function effectively

 12

Cryptography

● Crypto API developed rapidly for native IPSec
implementation, made it into 2.6 kernel

● Scatterlist API
● Initially synchronous w/ support for basic cipher

modes, digests and compressors
● Dynamic crypto algorithm module loading
● Now significantly evolved w/ async, hardware

support, ASM, many algorithms & modes

- I developed a crypto API based on several open
source projects including kerneli and Nettle

- Design input from Linus and Dave Miller
- Took about 5 weeks for the initial API to be merged,

had basic support for ciphers (symmetric), digests
(and HMAC), and compressors; used scatterlist
(vectored) API to facilitate deep kernel integration

- Was necessary for IPSec & made it in for 2.6 kernel
- Handed maintenance to Herbert Xu, who has done

great work extending the modes, algorithms, scope
- Herbert will be speaking on this at LPC in PDX.
- Are the T2 on-chip crypto specs available?

 13

Disk Encryption: DM-Crypt

● Operates transparently at block layer

● Key management with LUKS

● Default is AES-128/SHA-256

● Very nice integration in Fedora; try it!

- There are many schemes available, these are some
of the main ones in use.

- Linux Unified Key Setup-on-disk-format (LUKS)
- DM = device mapper, block layer plugins, allows also

for things like software raid, integration with LVM
- Block layer crypto is good because it’s simple, allows

encryption of RAID arrays, LVM volumes etc.
- Unmodified fs
- Swap support
- Lacks granularity

 14

Disk Encryption: ecryptfs

● Stacked filesystem encryption at VFS layer

● Per-object encryption

● Extensible key management

● Cryptographic metadata stored w/ objects,
allows them to be moved to different hosts

- Addresses many use cases where finer granularity is
required, such as incremental backups, sharing files
etc.

- Different algorithms for different objects
- Saves re-encrypting for transmission
- Selective use on fs, saves overhead
- TPM, PKCS#11 etc. for key management.
- Files appear normal in Base FS, POSIX compliance,

backup etc. works as expected.

 15

Network Encryption: IPSec

● Supports IPv4 and IPv6
● Implemented via generic transform (xfrm)

framework:
– xfrm stack applied to packet based on policy db

● xfrms include: ESP, AH, IPComp, MIP, IPIP
● Utilizes native Netlink sockets for scalability
● Also supports PF_KEY

- Native IPsec stack made possible by crypto policy
changes, designed and implemented by DaveM and
Alexey; unorthodox design aimed at max.
performance and utility

- By the time this became available, many people were
using other non-kernel crypto, e.g. SSH, SSL,
userland VPNs.

- This stack is used in commercial appliances, so you
may be using it anyway...

 16

Memory Protection

● Address Space Layout Randomization (ASLR)
● NX (No eXecute) bit support where available in

hardware or via emulation
● GCC stack smashing protector
● /dev/mem & null pointer restrictions
● MAC policy can be applied via SELinux:

– execheap, execmem, execmod, execstack

- Several schemes for resisting memory-based attacks,
depending on which distro and hardware you use

- ASLR: randomizes various aspects of application
address space: libraries, heap, stack, text; has been
broken

- See ExecShield (may be dropped soon b/c not
upstreamable & hw does it better), Mark Cox and
Drepper’s docs

- Much of this work comes from grsecurity / pax /
openwall

- Some of this is done in conjunction w/ userspace, e.g.
glibc and elf hardening

- The usability/security tradeoff of the linux protections
has come under criticism, some of it warranted

- Several external projects feed patches and help in,
not always successfully

- nx emulation uses segment limits
- FORTIFY_SOURCE

 17

Kernel Vulnerabilities

● Note that kernel vulnerabilities may allow
attackers to bypass kernel-based security
mechanisms.

● See “Linux Kernel Heap Tampering Detection”,
in Phrack 66 for a detailed discussion of the
topic.

- grsecurity folk have been working in this area; some
of it is likely not upstreamable

- LKIM addresses this; see referenced ACM paper;
code not currently available as open source

- A kernel vulnerability can arise from almost any
kernel bug – it may not be recognizable as a security
bug to even the most experienced kernel developer.

- One mechanism used by developers who suspect
their bug is security related is to notify vendor-sec,
which includes the security response folk from all of
the major vendors, for analysis & coordination.

- Linus’ policy is to simply fix all bugs (“security is not
special”) without fanfare; this is controversial but
does have one clear benefit: the bug is fixed.

 18

Linux Security Modules (LSM)

● Framework for integrating access control
schemes

● Hooks located at security-critical points in the
kernel, pass security-relevant information to
LSM module, which can veto the operation

● Avoids races when making security decisions
● Restrictive interface: can only further confine

access, not loosen it

- Developed in response to Linus’ initial reaction to
SELinux, where he did not want to decide on a
security model for the kernel, so make it pluggable

- AppArmor, SELinux, SGI etc. developers worked on
it, then these were ported to LSM, some new LSMs
developed

- Lots of controversy subsequently as SELinux
remained the only significant user; Linus reiterated
his position that as there was no consensus on
security model, LSM remains; use Arjan protocol for
reviewing new modules to avoid flamewars

- Drawbacks include weak semantics, lack of
consistent security model for ISVs / admins etc.

- One benefit is diversity of ideas (D. Wagner)
- Related work: BSD MAC framework, XSM, XACE

 19

SELinux

● Flexible fine-grained MAC scheme w/ least
privilege, confidentiality, integrity, isolation,
information flow control; exploit containment

● Composition of multiple security models under
single analyzable policy

● Currently ships with: Type Enforcement, RBAC
and MLS/MCS

● Clean separation of mechanism and policy to
meet very wide range of usage scenarios

- Rationale:
 - “trusted” systems not viable / generally useful
 - Need whole-system approach (i.e. extend to

network, database, virt, desktop...)
 - Mainstream MAC
- Targeted policy: limited confinement to network

facing services and base OS: made it possible to
enable by default

- Proven effectiveness, limits exploitation of vulns
- Usability addressed with high level abstractions, e.g.

kiosk mode, svirt
- Related work: SEBSD, FMAC; interop desired

- Kylin 3 (KACF), apparently “B2” class
- Certified LSPP/EAL4+, also shipping enabled by

default in Fedora
- Low-level policy is complex; relies on high level

abstractions for usability, like a spreadsheet on a PC.
- Customization is still a challenge; work to be done..
- Strong developer community

 20

Simplified Mandatory Access
Control Kernel (SMACK)

● Simple labeling of subjects and objects to
provide flexible MAC

● System labels define hierarchical limits
● Admin-defined labels can be any short string
● Policy is written as triples:

Subject Object [–rwxa]

- Developed by Casey, who has a long history with
Trusted OSs and is aware of their drawbacks

- System labels: hat / floor are like system high/low
- Some of the simplification appears genuinely useful

(e.g. for sockets), although overall it leads to coarser
and thus less expressive policy foundation (perhaps
something like CISC vs. RISC)

- Need more analysis of efficacy and practical
demonstration to be able to evaluate, but should be
able to achieve useful security goals

- Not aware of fielded systems using SMACK as yet
- Is it too simple to be generally useful ?

 21

AppArmor

● Not currently in kernel
● Path name access control scheme to confine

applications
● Aims to solve security usability by expressing

policy with a familiar abstractions, e.g.:
– File access controls defined with path names and

names of common operations
– POSIX capabilities described by name

- The pathname aspect has been contentious; critics
are concerned with object aliasing (aka forgeable
references), incomplete mediation, that the model
does not generalize, and will not ultimately be as
simple as expected

- Similar concept to “No Fly List”: assess the name of
the object instead of the object itself;

- Changes have been made to the scheme which
address some of the aliasing issues (e.g. more
control over linking), and advocates are ok with the
usability/security trade-off

- The flamewar aspect is overblown: it is normal and
expected for security engineers to robustly analyze
each others work, also part of Internet culture.

- Linus has taken the “I don’t like your security model”
argument off the table

 22

TOMOYO

● Path-based MAC scheme developed by NTT
research

● Aims to solve security usability with automatic
real-time policy generation

● Enforces previously observed behavior in
learning mode

● Domains are trees of process invocation
● Rules apply to domains

- R&D project from NTT; bosses told developers to
make something new

- Attempts to solve usability with automated policy
generation

- Pathnames are labels
- No MLS, no RBAC,
- “Task Oriented Management Obviates Your Onus on

Linux”
- Aimed at average users and admins, not security

professionals (according to their docs)
- Not clear how “status quo encapsulation” or

“unobserved but valid code path execution” is
addressed.

 23

Labeled Networking

● NetLabel
– CIPSO

● Legacy labeling using IP options

– IPSec
● Labeling of Security Associations

● Secmark
– Utilizes iptables
– Generic labeling (SMACK & SELinux use it)

- This is quite a complicated area overall, and while the
code is essentially complete and likely useful for
advanced users, it will take time for suitable general
purpose abstractions and applications to evolve

- Secmark is “local” labeling and does not require
protocol support anywhere; NetLabel is “remote”
labeling and requires protocol support at each end.

- Labeled networking ultimately is required to extend
the trusted path concept over the network, and is as
such an essential component of securing the
networked systems of the future.

 24

Network File Systems

● Labeled NFS
– NFSv4 extension
– Prototype code
– Also need to extend RPC security
– IETF process ongoing

● NFS ACLs
– Support for Linux ACLs and NFSv4 ACLS

● See talk by Greg Banks at LCA

Labeling:
- Several closed / proprietary implementations
- No standard
- Best if open and standard, generalized

ACLs:
- Lots of variations, need interop
- NFSv3 has support for native ACLs

- uses xattr APIs
- NFSv4 ACLs are implementation of Windows model,

which is very different (see Greg’s slides)
- NFSv4 code partially implemented
- ZFS, GPFS has it
- Needed for NAS interop, windows clients etc.

 25

Anti-Malware

● Good userspace solutions
● People still want kernel scanning
● fsnotify

– Generalized file notification framework
– Consolidate dnotify & fsnotify
– Useful for HSM

● TALPA
– File access scanning API for AV modules

- Problematic area; kernel devs not keen on in-kernel
scanning, should mostly be done in userspace; but
may have valid use-cases for network file servers

- AV companies not community oriented, often have
proprietary kernel modules

- Eric Paris started working as intermediary, came up
with fsnotify and TALPA

- TALPA; file access scanning API
- fsnotify merged, remaining status unclear

 26

Integrity & Platform Security

● TPM (Trusted Platform Module)
– Cryptographic processor, RNG, storage for keys

and measurements

● IMA (Integrity Measurement Architecture)
– Static integrity verification of code

● TXT (Intel Trusted Execution Technology)
– DRTM (Dynamic Root of Trust Measurement);

trusted launch, hardware security enhancements

● VT-d (device virtualization)
– Needed to secure IO devices

- This is part of the missing link: need to protect kernel!
- Linux is @ leading edge of this & continues to

advance
- DRM controversial (see TCPA rebuttal: TCPA can

implement DRM, but is not itself DRM).
- TPM can be very useful:
 - BitLocker
 - Sealing credentials for PGP, SSL, SSH etc.
 - Bring trusted environment up on untrusted system
- Remote attestation
- Static root of trust too difficult to work with
- Dynamic root of trust more promising

- TXT; do not have to trust everything!
- Invisiblethings Lab blog very useful
- Integrity Measurement Architecture (IMA) from IBM;

LKIM / contextual inspection next step (runtime...)
- VT-d necessary to e.g. properly virtualize DMA

 27

Audit

● Developed for certification (e.g. CAPP)
● Audit framework generates events:

– User sessions & configuration changes
– Syscalls
– LSM decisions

● Useful for forensics and deterrence
● SELinux, SMACK et al use it for detailed

reporting
● Netlink API for audit daemon, IDS

- Arguably not a security feature
- Standard feature of C2 / CAPP
- Developed for CAPP certification
- syscall auditing has performance issue which gets

blamed on SELinux
- Promising general use: IDS (in development)
- Also has filtering in kernel

 28

Seccomp

● Secure computing mode
– Extremely lightweight sandboxing for untrusted

code
– Application enters mode with fixed set of restricted

syscalls (read, write, exit, sigreturn)

● Proposal to convert into generic syscall filter
– Historically problematic area

- Andrea Archangeli originally developed this for a grid
computing business

- syscall wrapping considered harmful: LSM is the right
way to go; see Robert Watson paper "Exploiting
Concurrency Vulnerabilities in System Call
Wrappers"

- problems with races mainly
- Google investigating for Chrome:

- proves point that lack of consistent security API
is a problem

- LSM is right solution for hook points:
- still inconsistent between distros

 29

High Level View

● State of the art: Fedora 11
– Kiosk Mode as example

● Known mitigations
● Certifications

– RHEL: LSPP, CAPP, RBACPP at EAL4+
– Not a separate product, all upstream and open

● Security features standard and generalized

- Tie back to inevitability goals
- Meets extremely wide range of needs, from end user

desktop to military, stock exchanges etc.
- Combined together, current code provides layered

security (defense in depth; of course there is then
attack in depth...), incremental improvements &
retrofitting means we can deliver better security to
large audience

- Has also sparked improvements in other OSs
security

- Move to security as standard feature of OS is a major
step in itself

- Several known exploits blocked, covered in
LinuxWorld article in 2008

- CtF contests seem to be not using Fedora anymore...

 30

Future Directions

● Continued refinement and hardening
– Working towards “Inevitability” goals

● Extensible models
– Consistent policy for entire computing environment

● Cloud Computing

- This process will not end, refinement expected to be
ongoing

- Computing environment evolving: virtualization, cloud
etc. are just what we know about now... security
needs to generalize in terms of technologies and
use-cases

- As we can’t redesign the OS from the ground up w/
security in mind, retrofit & refinement is the only
option; so we need to work with that

 31

Challenges

● Multiple security models hindering adoption

● Convincing people of the value of security:
– enable features
– report problems
– help improve usability

- ISV & user adoption: need to support multiple
security models; no standard API (google chrome
folk compare Apple dev vs. Linux...); not impossible,
but extremely difficult (need to design flexibility into
each layer, e.g. svirt, xace; then develop abstracted
API....)

- Security is useless if nobody enables it...
- If people have problems, reporting the problems

allows us to solve them!
- Core issue is getting people to understand the need

for security (cf. Seat belts, bike helmets) and to then
participate in the development cycle

- Some people still disable DAC by doing everything as
root; we probably don’t have much hope of
convincing them that MAC is worthwhile, but for the
general user base, we can do a great deal, and we
can also do a lot for specialist security users at the
same time with the same codebase.

 32

Resources

● Linux Kernel Security Wiki

● LSM Mailing List

● LWN Security page

- These are the most important links; everything else
can be found from these

- LSM list is for general kernel security development
discussion

- Also, a list of URLs is given at the end of the slides

 33

Questions?

- Thanks to Stephen Smalley, Paul Moore and Dan
Walsh for feedback on these slides

 34

Useful URLs

Kernel Security Wiki
http://security.wiki.kernel.org/

LSM Mailing List
http://vger.kernel.org/vger­lists.html#linux­security­module

LWN Security Page
http://lwn.net/Security/

“The Inevitability of Failure: The Flawed Assumption of Security in Modern
Computing Environments”

http://csrc.nist.gov/nissc/1998/proceedings/paperF1.pdf

LSM Usenix Paper
http://www.usenix.org/event/sec02/wright.html

Kernel Memory Protection
http://lwn.net/Articles/329787/

Linux Security Model Comparison
http://tomoyo.sourceforge.jp/wiki­e/?WhatIs#comparison

Note: this is not for display purposes really, but for
people to use locally when looking for links.

 35

Useful URLs ...
SELinux

http://selinuxproject.org/
“Have You Driven an SELinux Lately?” (OLS paper on current state)

http://namei.org/ols­2008­selinux­paper.pdf
“Anatomy of Fedora Kiosk Mode”

http://namei.org/presentations/fedora­kiosk­mode­foss­my­2008.pdf
“SELinux Memory Protection Tests”

http://people.redhat.com/drepper/selinux­mem.html
“A seatbelt for server software: SELinux blocks real­world exploits”

http://www.linuxworld.com/news/2008/022408­selinux.html

SMACK
http://schaufler­ca.com/

AppArmor
http://en.opensuse.org/Apparmor

TOMOYO
http://tomoyo.sourceforge.jp/

“POSIX file capabilities: Parceling the power of root”
http://www.ibm.com/developerworks/library/l­posixcap.html

“POSIX Access Control Lists on Linux”
http://www.suse.de/~agruen/acl/linux­acls/online/

Note: this is not for display purposes really, but for
people to use locally when looking for links.

 36

Useful URLs ...
"Implementing Native NFSv4 ACLs in Linux"

http://lca2009.linux.org.au/slides/79.tar.gz

“Applying mount namespaces”
http://www.ibm.com/developerworks/linux/library/l­mount­namespaces.html

“Disk encryption in Fedora: Past, present and future”
http://is.gd/16012

“Limiting buffer overflows with ExecShield” (2005)
http://www.redhat.com/magazine/009jul05/features/execshield/

“Linux Kernel Heap Tampering Detection”
http://phrack.org/issues.html?issue=66&id=15#article

“System integrity in Linux”
http://lwn.net/Articles/309441/

“Linux kernel integrity measurement using contextual inspection” (LKIM)
http://portal.acm.org/citation.cfm?id=1314354.1314362

Intel TXT Site
http://www.intel.com/technology/security/

IBM TCPA Resources
 http://www.research.ibm.com/gsal/tcpa/tcpa_rebuttal.pdf

Invisible Things Labs
 http://theinvisiblethings.blogspot.com/

Note: this is not for display purposes really, but for
people to use locally when looking for links.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

