Linux Kernel Security

Adapting 1960s Technology to Meet 21st Century Threats

James Morris

FOSS.IN/2010 Bangalore, India

Fig. 1

History

"The first fact to face is that UNIX was not developed with security, in any realistic sense, in mind; this fact alone guarantees a vast number of holes."

Dennis Ritchie, "On the Security of UNIX", 1979

Fig. 2

Unix DAC

DAC is "simple" and somewhat effective, but inadequate for modern environment:

Does not protect against flawed or malicious code

Figure 7: A finite state automaton describing the *setuid* system call in Linux. This FSA considers three user ID values: the root user ID and two distinct non-root user ID values x and y. Ellipses represent states of the FSA, where a notation like "R=0,E=x,S=y" indicates that ruid = 0, euid = x and suid = y. Each transition is labelled with the system call it corresponds to.

Fig. 3

(Actually, DAC is not simple)

"It must be recognized that the mere notion of a super-user is a theoretical, and usually practical, blemish on any protection scheme."

(also from Ritchie 1979)

Fig. 4

Enhanced DAC

POSIX Capabilities (privileges)

Access Control Lists (ACLs)

Beyond DAC

Fig. 5

Namespaces

Network Access Control

Netfilter

iptables

ebtables

Fig. 7

Cryptography

Disk Encryption:

dm-crypt ecryptfs

Network Encryption:

IPsec

System Hardening

ASLR

NX

GCC

/dev/mem

MAC policy

Kernel pointers

The Inevitability of Failure

The Flawed Assumption of Security in Modern Computing Environments

Fig. 9

Mandatory security

Trusted / protected path

Assurance

Linux MAC

Linux Security Modules

SELinux

Generalized MAC

Very fine-grained

Policy-flexible

Simplified Mandatory Access Control Kernel (SMACK)

Simple label-based MAC

Policy is written as triples:

subject object [-rwxa]

TOMOYO

Path-based MAC scheme

Automatic real-time policy generation

Policy applied to trees of process invocation

AppArmor

Pathname access control scheme

Security usability via familiar abstractions

Extending MAC

Netlabel

Secmark

NFSv4

sVirt

Audit

Required for certification

Monitor syscall, LSM & misc. security events

Actually quite useful

Integrity & Platform Security

TPM

IMA / EVM

TXT

VT-d

Seccomp

Extremely lightweight sandboxing

Reduces attack surface

Current Status

Meets extremely wide range of security goals

Security features now mainstream

Better equipped to address modern threats

Ongoing Challenges

Continued refinement & hardening

Multiple security models hindering adoption

Threats will continue to evolve

How to Help

Enable features

Report problems

Share knowledge

Resources

Linux Kernel Security Wiki

LSM Mailing List

LWN Security page

Questions?

Useful URLs

```
Kernel Security Wiki
   http://security.wiki.kernel.org/
LSM Mailing List
   http://vger.kernel.org/vger-lists.html#linux-security-module
LWN Security Page
   http://lwn.net/Security/
"The Inevitability of Failure: The Flawed Assumption of Security in Modern
Computing Environments"
   http://csrc.nist.gov/nissc/1998/proceedings/paperF1.pdf
LSM Usenix Paper
   http://www.usenix.org/event/sec02/wright.html
Kernel Memory Protection
   http://lwn.net/Articles/329787/
Linux Security Model Comparison
```

http://tomoyo.sourceforge.jp/wiki-e/?WhatIs#comparison

```
SELinux
   http://selinuxproject.org/
"Have You Driven an SELinux Lately?" (OLS paper on current state)
   http://namei.org/ols-2008-selinux-paper.pdf
"Anatomy of Fedora Kiosk Mode"
   http://namei.org/presentations/fedora-kiosk-mode-foss-my-2008.pdf
"SELinux Memory Protection Tests"
   http://people.redhat.com/drepper/selinux-mem.html
"A seatbelt for server software: SELinux blocks real-world exploits"
   http://www.linuxworld.com/news/2008/022408-selinux.html
SMACK
   http://schaufler-ca.com/
AppArmor
   http://en.opensuse.org/Apparmor
TOMOY0
   http://tomoyo.sourceforge.jp/
"POSIX file capabilities: Parceling the power of root"
   http://www.ibm.com/developerworks/library/l-posixcap.html
"POSIX Access Control Lists on Linux"
   http://www.suse.de/~agruen/acl/linux-acls/online/
```

Useful URLs ...

```
"Implementing Native NFSv4 ACLs in Linux"
   http://lca2009.linux.org.au/slides/79.tar.gz
"Applying mount namespaces"
   http://www.ibm.com/developerworks/linux/library/l-mount-namespaces.html
"Disk encryption in Fedora: Past, present and future"
   http://is.gd/16012
"Limiting buffer overflows with ExecShield" (2005)
   http://www.redhat.com/magazine/009jul05/features/execshield/
"Linux Kernel Heap Tampering Detection"
   http://phrack.org/issues.html?issue=66&id=15#article
"System integrity in Linux"
   http://lwn.net/Articles/309441/
"Linux kernel integrity measurement using contextual inspection" (LKIM)
   http://portal.acm.org/citation.cfm?id=1314354.1314362
Intel TXT Site
   http://www.intel.com/technology/security/
IBM TCPA Resources
    http://www.research.ibm.com/gsal/tcpa/tcpa_rebuttal.pdf
Invisible Things Labs
```

http://theinvisiblethings.blogspot.com/

Image Credits

- 1. Bell Labs
- 2. Duke University Ad*Access
- 3. Hao Chen, David Wagner, and Drew Dean.
- 4. "nofeel" (flickr)
- 5. Unknown
- 6. Ian Lloyd (flickr)
- 7. James Morris
- 8. Steve Jurvetson (flickr)
- 9. Michael Scott (flickr)
- 10. Alfred T Palmer (LoC)