Linux Kernel Security

Adapting 1960s Technology to Meet 21st Century Threats

James Morris

FOSS.IN/2010
Bangalore, India
History
“The first fact to face is that UNIX was not developed with security, in any realistic sense, in mind; this fact alone guarantees a vast number of holes.”

Unix DAC
DAC is “simple” and somewhat effective, but inadequate for modern environment:

Does not protect against flawed or malicious code
Figure 7: A finite state automaton describing the setuid system call in Linux. This FSA considers three user ID values: the root user ID and two distinct non-root user ID values x and y. Ellipses represent states of the FSA, where a notation like “R=0,E=x,S=y” indicates that $ruid = 0$, $euid = x$ and $suid = y$. Each transition is labelled with the system call it corresponds to.

(Actually, DAC is not simple)
“It must be recognized that the mere notion of a super-user is a theoretical, and usually practical, blemish on any protection scheme.”

(also from Ritchie 1979)
Enhanced DAC
POSIX Capabilities (privileges)

Access Control Lists (ACLs)
Beyond DAC
Namespaces
Network Access Control

Netfilter
iptables
ebtables
Cryptography
Disk Encryption:

dm-crypt
ecryptfs

Network Encryption:

IPsec
System Hardening

ASLR
NX
GCC
/dev/mem
MAC policy
Kernel pointers

Fig. 8
The Inevitability of Failure

The Flawed Assumption of Security in Modern Computing Environments
Mandatory security

Trusted / protected path

Assurance
Linux MAC
SELinux

Generalized MAC

Very fine-grained

Policy-flexible
Simplified Mandatory Access Control Kernel (SMACK)

Simple label-based MAC

Policy is written as triples:

\(subject \ object \ [-rwxa] \)
TOMOYO

Path-based MAC scheme

Automatic real-time policy generation

Policy applied to trees of process invocation
AppArmor

Pathname access control scheme

Security usability via familiar abstractions
Extending MAC

Netlabel
Secmark
NFSv4
sVirt
Audit

Required for certification

Monitor syscall, LSM & misc. security events

Actually quite useful
Integrity & Platform Security

TPM

IMA / EVM

TXT

VT-d
Seccomp

Extremely lightweight sandboxing

Reduces attack surface
Current Status

Meets extremely wide range of security goals

Security features now mainstream

Better equipped to address modern threats
Ongoing Challenges

Continued refinement & hardening

Multiple security models hindering adoption

Threats will continue to evolve
How to Help

- Enable features
- Report problems
- Share knowledge

Fig. 10
Resources

Linux Kernel Security Wiki

LSM Mailing List

LWN Security page
Questions ?
Useful URLs

Kernel Security Wiki
http://security.wiki.kernel.org/

LSM Mailing List
http://vger.kernel.org/vger-lists.html#linux-security-module

LWN Security Page
http://lwn.net/Security/

“The Inevitability of Failure: The Flawed Assumption of Security in Modern Computing Environments”

LSM Usenix Paper
http://www.usenix.org/event/sec02/wright.html

Kernel Memory Protection
http://lwn.net/Articles/329787/

Linux Security Model Comparison
SELinux
 http://selinuxproject.org/
“Have You Driven an SELinux Lately?” (OLS paper on current state)
“Anatomy of Fedora Kiosk Mode”
“SELinux Memory Protection Tests”
 http://people.redhat.com/drepper/selinux-mem.html
“A seatbelt for server software: SELinux blocks real-world exploits”

SMACK
 http://schaufler-ca.com/

AppArmor
 http://en.opensuse.org/Apparmor

TOMOYO
 http://tomoyo.sourceforge.jp/

“POSIX file capabilities: Parceling the power of root”

“POSIX Access Control Lists on Linux”
 http://www.suse.de/~agruen/acl/linux-acls/online/
Useful URLs ...

"Implementing Native NFSv4 ACLs in Linux"

“Applying mount namespaces”

“Disk encryption in Fedora: Past, present and future”
http://is.gd/16012

“Limiting buffer overflows with ExecShield” (2005)
http://www.redhat.com/magazine/009jul05/features/execshield/

“Linux Kernel Heap Tampering Detection”
http://phrack.org/issues.html?issue=66&id=15#article

“System integrity in Linux”
http://lwn.net/Articles/309441/

“Linux kernel integrity measurement using contextual inspection” (LKIM)
http://portal.acm.org/citation.cfm?id=1314354.1314362

Intel TXT Site
http://www.intel.com/technology/security/

IBM TCPA Resources

Invisible Things Labs
http://theinvisiblethings.blogspot.com/
Image Credits

1. Bell Labs
2. Duke University Ad*Access
3. Hao Chen, David Wagner, and Drew Dean.
4. “nofeel” (flickr)
5. Unknown
6. Ian Lloyd (flickr)
7. James Morris
8. Steve Jurvetson (flickr)
9. Michael Scott (flickr)
10. Alfred T Palmer (LoC)