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Abstract

Computer security is a chronic and growing prob-
lem, even for Linux, as evidenced by the seem-
ingly endless stream of software security vulnera-
bilities. Security research has produced numerous
access control mechanisms that help improve sys-
tem security; however, there is little consensus on
the best solution. Many powerful security systems
have been implemented as research prototypes or
highly specialized products, leaving systems opera-
tors with a difficult challenge: how to utilize these
advanced features, without having to throw away
their existing systems?

The Linux Security Modules (LSM) project ad-
dresses this problem by providing the Linux kernel
with a general purpose framework for access control.
LSM enables loading enhanced security policies as
kernel modules. By providing Linux with a stan-
dard API for policy enforcement modules, the LSM
project hopes to enable widespread deployment of
security hardened systems. This paper presents the
design and implementation of the LSM framework,
a discussion of performance and security impact on
the kernel, and a brief overview of existing security
modules.
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1 Introduction

Security is a chronic and growing problem: as more
systems (and more money) go on line, the motiva-
tion to attack rises. Linux is not immune to this
threat: the “many eyes make shallow bugs” argu-
ment [25] not withstanding, Linux systems do expe-
rience a large number of software vulnerabilities.

An important way to mitigate software vulnera-
bilities is through effective use of access controls.
Discretionary access controls (root, user-IDs and
mode bits) are adequate for user management of
their own privacy, but are not sufficient to pro-
tect systems from attack. Extensive research in
non-discretionary access control models has been
done for over thirty years [2, 26, 18, 10, 16, 5, 20]
but there has been no real consensus on which
is the one true access control model. Because of
this lack of consensus, there are many patches to
the Linux kernel that provide enhanced access con-
trols [7, 11, 12, 14, 17, 19, 24, 20, 32] but none of
them are a standard part of the Linux kernel.

The Linux Security Modules (LSM) [30, 27, 31]
project seeks to solve this Tower of Babel [1]
quandary by providing a general-purpose framework
for security policy modules. This allows many dif-
ferent access control models to be implemented as
loadable kernel modules, enabling multiple threads
of security policy engine development to proceed in-
dependently of the main Linux kernel. A number of
existing enhanced access control implementations,
including POSIX.1e capabilities [29], SELinux, Do-
main and Type Enforcement (DTE) [14] and Linux
Intrusion Detection System (LIDS) [17] have al-
ready been adapted to use the LSM framework.



The remainder of this paper is organized as follows.
Section 2 presents the LSM design and implemen-
tation. Section 3 gives a detailed look at the LSM
interface. Section 4 describes the impact LSM has
on performance and security, including a look at
some projects that have been ported to LSM so far.
Section 5 presents our conclusions.

2 Design and Implementation

At the 2001 Linux Kernel Summit, the NSA pre-
sented their work on Security-Enhanced Linux
(SELinux) [19], an implementation of a flexible ac-
cess control architecture in the Linux kernel. Li-
nus Torvalds appeared to accept that a general
access control framework for the Linux kernel is
needed. However, given the many Linux kernel se-
curity projects, and Linus’ lack of expertise in so-
phisticated security policy, he preferred an approach
that allowed security models to be implemented as
loadable kernel modules. In fact, Linus’ response
provided the seeds of the LSM design. The LSM
framework must be:

• truly generic, where using a different security
model is merely a matter of loading a different
kernel module;

• conceptually simple, minimally invasive, and
efficient; and

• able to support the existing POSIX.1e capabil-
ities logic as an optional security module.

To achieve these goals while remaining agnostic with
respect to styles of access control mediation, LSM
takes the approach of mediating access to the ker-
nel’s internal objects: tasks, inodes, open files, etc.,
as shown in Figure 1. User processes execute system
calls, which first traverse the Linux kernel’s existing
logic for finding and allocating resources, perform-
ing error checking, and passing the classical Unix

discretionary access controls. Just before the ker-
nel attempts to access the internal object, an LSM
hook makes an out-call to the module posing the
question, “Is this access ok with you?” The mod-
ule processes this policy question and returns either
“yes” or “no.”

One might ask why LSM chose this approach rather
than system call interposition (mediating system

calls as they enter the kernel) or device mediation
(mediating at access to physical devices).1 The rea-
son is that information critical to sound security pol-
icy decisions is not available at those points. At the
system call interface, userspace data, such as a path
name, has yet to be translated to the kernel object
it represents, such as an inode. Thus, system call
interposition is both inefficient and prone to time-of-
check-to-time-of-use (TOCTTOU) races [28, 6]. At
the device interface, some other critical information
(such as the path name of the file to be accessed)
has been thrown away. In between is where the full
context of an access request can be seen, and where
a fully informed access control decision can be made.

A subtle implication of the LSM architecture is that
access control decisions are restrictive2: the mod-
ule can really only say “no” [31]. Functional errors
and classical security checks can result in an access
request being denied before it is ever presented to
the LSM module. This is the opposite of the way
mandatory access control systems are normally im-
plemented. This design choice limits the flexibility
of the LSM framework, but substantially simplifies
the impact of the LSM on the Linux kernel. To do
otherwise would have required implementing many
instances of the same hook throughout the kernel,
to ensure that the module is consulted at every place
where a system call could “error out.”

Composition of LSM modules is another problem-
atic issue. On the one hand, security policies do not
compose in the general case because some policies
may explicitly conflict [13]. On the other hand, it
is clearly desirable to compose some combinations
of security policies. Here, LSM effectively punts to
the module writer: to be able to “stack” modules,
the first module loaded must also export an LSM
interface to subsequent LSM modules to be loaded.
The first module is then responsible for composing
the access control decisions that it gets back from
secondary modules.

1The glib answer is that the Linux kernel already provides
those features and there would be nothing for us to do :-)

2Caveat: the capable() hook, which is needed to sup-
port POSIX.1e capabilities, can override DAC checks, see
Section 3.8.
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3 LSM Interface

Having discussed the high-level design philosophies
of LSM in Section 2, we now turn to the imple-
mentation of the LSM interface. At the core, the
LSM interface is a large table of functions, which
by default are populated with calls that implement
the traditional superuser DAC policy. The module
writers are then responsible for providing implemen-
tations of the functions that they care about. This
section provides a detailed analysis of those func-
tions.3 Section 3.1 shows how to register a security
module. Sections 3.2 through 3.8 are organized by
kernel object and discuss the LSM interface avail-
able to mediate access to each object.

3.1 Policy Registration

The LSM interface is implemented as a structure of
callback methods, security ops. A security mod-
ule is responsible for implementing the callbacks ac-
cording to the security policy it is enforcing. At
boot time the security ops structure is initialized
with default callbacks, which implement traditional
superuser semantics.

The security module can be built as a dynami-
3However, it is not a programmer’s guide.

cally loadable module or statically linked into the
kernel. It is initialized either at module load
time for dynamically loaded modules or during
do initcalls() for statically linked modules. Dur-
ing this initialization, the security module must reg-
ister its callbacks with the LSM framework by call-
ing register security(). A module should call
unregister security() when it is unloaded to re-
turn the security ops structure to its default su-
peruser policy.

The LSM framework is aware of only one primary
security policy at any time. Once a security policy
is registered with the LSM framework, subsequent
attempts to register new security policies will fail.
In some cases it is appropriate to compose security
policies, as noted in Section 2. LSM allows mod-
ules to stack with each other, however, the frame-
work remains aware of only a single security ops
structure. In order to register additional security
policies, the subsequent modules register with the
primary module using mod reg security(). This
allows the LSM framework to remain simple, push-
ing the policy which defines composition into the
primary security module.



3.2 Task Hooks

The task struct structure is the kernel object rep-
resenting kernel schedulable tasks. It contains basic
task information such as user and group ID, resource
limits, and scheduling policies and priorities. LSM
provides a group of task hooks, task security ops,
that mediate a task’s access to this basic task infor-
mation. Interprocess signalling is mediated by the
LSM task hooks to monitor tasks’ abilities to send
and receive signals. LSM adds a security field to
the task struct to allow security policies to label
a task with a policy specific security label.

The LSM task hooks have full task life-cycle cov-
erage. The create() task hook is called, verifying
that a task can spawn children. If this is successful,
a new task is created and the alloc security()
task hook is used to manage the new task’s security
field. When a task exits, the kill() task hook is
consulted to verify that the task can signal its par-
ent. Similarly, the wait() task hook is called in the
parent task context, verifying the parent task can
receive the child’s signal. And finally, the task’s se-
curity field is released by the free security() task
hook.

During the life of a task it may attempt to change
some of its basic task information. For example a
task may call setuid(2). This is, of course, man-
aged by LSM with a corresponding setuid() task
hook. If this is successful the kernel updates the
task’s user identity and then notifies the policy mod-
ule via the post setuid() task hook. The notifi-
cation allows the module to update state and, for
example, update the task’s security field.

To avoid leaking potentially sensitive task informa-
tion, LSM mediates the ability to query another
task’s state. So, for example, a query for the process
group ID or the scheduler policy of an arbitrary task
is protected by the getpgid() or getscheduler()
task hooks respectively.

3.3 Program Loading Hooks

The linux binprm structure represents a new
program being loaded during an execve(2).
LSM provides a set of program loading hooks,
binprm security ops, to manage the process of
loading new programs. Many security models, in-

cluding Linux capabilities, require the ability to
change privileges when a new program is executed.
Consequently, these LSM hooks are called at criti-
cal points during program loading to verify a task’s
ability to load a new program and update the task’s
security field.

LSM adds a security field to the linux binprm
structure. At the beginning of an execve(2)
after the new program file is opened, the
alloc security() program loading hook is called
to allocate the security field. The set security()
hook is used to save security information in the
linux binprm security field. This hook may be
called multiple times during a single execve(2) to
accommodate interpreters. Either of these program
loading hooks can be used to deny program execu-
tion.

In the final stages of program loading, the
compute creds() program loading hook is called
to set the new security attributes of a task be-
ing transformed by execve(2). Typically, this
hook will calculate the task’s new credentials based
on both its old credentials and the security infor-
mation stored in the linux binprm security field.
Once the new program is loaded, the kernel re-
leases the linux binprm security field by calling the
free security() program loading hook.

3.4 File System Hooks

The VFS layer defines three primary objects which
encapsulate the interface that low level filesystems
are developed against: the super block, the inode
and the file. Each of these objects contains a set
of operations that define the interface between the
VFS and the actual filesystem. This interface is
a perfect place for LSM to mediate filesystem ac-
cess. The LSM filesystem hooks are described in
Sections 3.4.1 through 3.4.3.

3.4.1 Super Block Hooks

The kernel’s super block structure represents a
filesystem. This structure is used when mounting
and unmounting a filesystem or obtaining filesys-
tem statistics, for example. The super block hooks,
super block security ops, mediate the various
actions that can be taken on a super block. As
a simple example, the statfs() super block hook



checks permission when a task attempts to obtain a
file system’s statistics.

When mounting a filesystem, the kernel first val-
idates the request by calling the mount() super
block hook. Assuming success, a new super block
is created4 regardless of whether it is backed by a
block device or by an anonymous device. The ker-
nel then allocates space for a security field in the
new super block by calling the alloc security()
super block hook. Next, when the super block is
to be added to the global tree, the check sb() su-
per block hook is called to verify that the filesys-
tem can indeed be mounted at the point in the
tree that is being requested. If this is successful,
a post addmount() hook is invoked to synchronize
the security module’s state.

The super block hook umount() is called to check
permission when unmounting a filesystem. If suc-
cessful, the umount close() hook is used to syn-
chronize state and, for example, close any files in
the filesystem that are held open by the security
module. Once the super block is no longer refer-
enced, it will be deleted, and the free security()
hook will free the security field.

3.4.2 Inode Hooks

The kernel’s inode structure represents a basic
filesystem object, e.g., a file, directory, or symlink.
The LSM inode hooks mediate access to this funda-
mental kernel structure. A well defined set of opera-
tions, inode operations, describe the actions that
can be taken on an inode — create(), unlink(),
lookup(), mknod(), rename(), and so on. This
encapsulation defines a nice interface for LSM to
mediate access to the inode object. In addition,
LSM adds a security field to the inode structure
and corresponding inode hooks to manage security
labelling.

The kernel’s inode cache is populated by either file
lookup operations or filesystem object-creation op-
erations. When a new inode is created, the secu-
rity module allocates space for the inode security
field with the alloc security() inode hook. Ei-
ther post-lookup or post-creation, the newly created
objects are labelled. The label may be cleared by
the delete() inode hook when an inode’s link count
reaches zero. And finally, when an inode is de-

4In some cases, super blocks are recycled.

stroyed, the free security() inode hook is called
to release the space allocated for the security field.

In many cases, the LSM inode hooks are identical to
the inode operations. For all inode operations
that can create new filesystem objects a “post” in-
ode hook is defined for coherent security labelling.
For example, when a task creates a new symlink, the
symlink() inode hook is called to check permission
to create the symlink. Then if the symlink creation
is successful, the post symlink() hook is called to
set the security label on the newly created symlink.

Whenever possible, LSM leverages the existing
Linux kernel security infrastructure. The kernel’s
standard Unix DAC checks compare the uids, guids,
and mode bits when checking for permission to ac-
cess filesystem objects. The VFS layer already
has a permission() function which is a wrap-
per for the permission() inode operation. LSM
uses this pre-existing infrastructure and adds its
permission() inode hook to the VFS wrapper.

3.4.3 File Hooks

The kernel’s file structure represents an open
filesystem object. It contains the file operations
structure, which describes the operations that can
be done to a file. For example, a file can be
read from and written to, seeked through, mapped
into memory, and so on. Similar to the inode hooks,
LSM provides file hooks to mediate access to files,
many of which mirror the file operations. A se-
curity field has been added to the file structure for
labelling.

When a file is opened, a new file object is cre-
ated. At this time, the alloc security() file hook
is called to allocate a security field and label the
file. This label persists until the file is closed,
when the free security() file hook is called to free
the security field.

The permission() file hook can be used to revali-
date read and write permissions at each file read
or write. This is not effective against reading and
writing of memory mapped files, and the changes
required to support this page level revalidation are
considered too invasive. Actually mapping a file is,
however, protected with the mmap() file hook. And
changing the protection bits on mapped file regions
must pass the mprotect() file hook.



When using file locks to synchronize multiple
readers or writers, a task must pass the lock() file
hook permission check before performing any lock-
ing operation on a file.

If the O ASYNC flag is set on a file, asynchronous
I/O ready signals are delivered to the file owner
when the file is ready for input or output. The
ability to specify the task that will receive the I/O
ready signals is protected by the set fowner() file
hook. Also, the actual signal delivery is mediated
by the send sigiotask() file hook.

Miscellaneous file operations that come through
the ioctl(2) and fcntl(2) interfaces are protected
by the ioctl() and fcntl() file hooks respectively.
Another miscellaneous action protected by the file
hooks is the ability to receive an open file descriptor
through a socket control message. This action is
protected by the receive() file hook.

3.5 IPC Hooks

The Linux kernel provides the standard SysV
IPC mechanisms: shared memory, semaphores,
and message queues. LSM defines a set of IPC
hooks which mediate access to the kernel’s IPC
objects. Given the design of the kernel’s IPC
data structures, LSM defines one common set of
IPC hooks, ipc security ops, as well as sets
of object specific IPC hooks: shm security ops,
sem security ops, msg queue security ops, and
msg msg security ops.

3.5.1 Common IPC Hooks

The kernel’s IPC object data structures share
a common credential structure, kern ipc perm.
This structure is used by the kernel’s ipcperms()
function when checking IPC permissions. LSM
adds a security field to this structure and
an ipc security ops hook, permission(), to
ipcperms() to give the security module access to
these existing mediation points. LSM also defines
an ipc security ops hook, getinfo(), to mediate
info requests for any of the IPC objects.

3.5.2 Object Specific IPC Hooks

The LSM IPC object specific hooks define the
alloc security() and free security() functions
to manage the security field in each object’s
kern ipc perm data structure. An IPC object is
created with an initial “get” request, which trig-
gers the object specific alloc security. If the
“get” request finds an already existing object, the
associate() hook is called to check permissions be-
fore returning the object.

IPC object control commands, shmctl(2),
semctl(2), and msgctl(2) are mediated by object
specific “ctl” hooks. For example, when a SHM LOCK
request is issued, the shm security ops shmctl()
hook is checked for permission prior to completing
the request.

Any attempt to change a semaphore count is pro-
tected by the sem security ops semop() hook. At-
taching to a shared memory segment is protected
by the shm security ops shmat() hook. Sending
and receiving messages on a message queue are pro-
tected by the msg queue security ops msgsnd()
and msgrcv() hooks. The individual messages are
considered as well as the queue when verifying per-
mission. When a new message is created, the
msg msg security ops alloc security() hook al-
locates the security field stored in the actual mes-
sage data structure. Upon receipt, the msgrcv()
hook can verify the security field on both the queue
and the message.

3.6 Module Hooks

The LSM interface would surely be incomplete
if it didn’t mediate loading and unloading ker-
nel modules. The LSM module loading hooks,
module security ops, add permission checks pro-
tecting the creation and initialization of loadable
kernel modules as well as module removal.

3.7 Network Hooks

The Linux kernel features an extensive suite of net-
work protocols and supporting components. As net-
working is an important aspect of Linux, LSM ex-
tends the concept of a generalized security frame-
work to this area of the kernel.



A key implementation challenge was to determine
the initial requirements for the network hooks. The
existing SELinux implementation was utilized as a
model, as SELinux is itself a highly generalized secu-
rity infrastructure which was to be ported to LSM.
Other Linux security projects were reviewed, al-
though none relevant to the version 2.5 kernel series
were found with networking requirements in excess
of SELinux. Potential requirements for IPSec and
traditional labeled networking systems were also
taken into account.

As the Linux network stack utilizes the Berkeley
sockets model [21], LSM is able to provide coarse
coverage for all socket-based protocols via the use
of hooks within the socket layer.

Additional finer-grained hooks have been imple-
mented for the IPv4, Unix domain, and Netlink
protocols, which were considered essential for the
implementation of a minimally useful system. Sim-
ilar hooks for other protocols may be implemented
at a later stage.

Coverage of low level network support components
such as routing tables and traffic classifiers is some-
what limited due to the invasiveness of the code
which would be required to implement consistent
fine-grained hooks. Accesses to these objects can
be interposed at higher levels (e.g., via system calls
such as ioctl(2)), although granularity may be re-
duced by TOCTTOU issues. The existing kernel
code does however impose a CAP NET ADMIN capa-
bility requirement for tasks which attempt to write
to important network support components.

The details of the network hooks are described in
Sections 3.7.1 through 3.7.6.

3.7.1 Sockets and Application Layer

Application layer access to networking is me-
diated via a series of socket-related hooks,
socket security ops. When an application at-
tempts to create a socket with the socket(2) sys-
tem call, the create() hook allows for mediation
prior to the actual creation of the socket. Following
successful creation, the post create() hook may
be used to update the security state of the inode
associated with the socket.

Since active user sockets have an associated inode

structure, a separate security field was not added
to the socket structure or to the lower-level sock
structure. However, it is possible for sockets to tem-
porarily exist in a state where they have no socket
or inode structure. Hence, the networking hook
functions must take care in extracting the security
information for sockets.

Mediation hooks are also provided for all of the
socket system calls:

bind(2)

connect(2)

listen(2)

accept(2)

sendmsg(2)

recvmsg(2)

getsockname(2)

getpeername(2)

getsockopt(2)

setsockopt(2)

shutdown(2)

Protocol-specific information is available via the
socket structure passed as a parameter to all of
these hooks (except for create(), as the socket
does not yet exist at this hook). This facilitates
mediation based on transport layer attributes such
as TCP connection state, and seems to obviate the
need for explicit transport layer hooks.

The sock rcv skb() hook is called when an incom-
ing packet is first associated with a socket. This
allows for mediation based upon the security state
of receiving application and security state propa-
gated from lower layers of the network stack via the
sk buff security field (see section 3.7.2).

Additional socket hooks are provided for Unix do-
main communication within the abstract names-
pace, as binding and connecting to Unix do-
main sockets in the abstract namespace is
not mediated by filesystem permissions. The
unix stream connect() hook allows mediation of
stream connections, while datagram based commu-
nications may be mediated on a per-message basis
via the unix may send() hook.

3.7.2 Packets

Network data traverses the network stack in pack-
ets encapsulated by a structure called an sk buff



(socket buffer). The sk buff structure provides
storage for packet data and related state informa-
tion, and is considered to be owned by the current
layer of the network stack.

LSM adds an opaque security field to the sk buff
structure, so that security state may be managed
across network layers on a per-packet basis.

A set of sk buff hooks is provided for lifecycle man-
agement of the security field. For LSM, the critical
lifecycle events for an sk buff are:

• Allocation
• Copying
• Cloning
• Setting ownership to sending socket
• Datagram reception
• Destruction

Hooks are provided for each of these events, al-
though they are only intended to be used for main-
taining the security field data. Encoding, decoding
and interpretation of the security field data is per-
formed by layer-specific hooks such as the socket
and network layer hooks.

Generally, the sk buff hooks and security field only
need to be used when the security state of a packet
must be managed between layers of the network
stack. Examples of such cases include labeled net-
working via IP options and management of nested
IPSec Security Associations [15].

3.7.3 Transport Layer (IPv4)

Explicit hooks are not required for the transport
layer, as sufficient protocol state information for
LSM is available at the socket and network layer
hooks (discussed in section 3.7.1).

3.7.4 Network Layer (IPv4)

Hooks are provided at the network layer for IPv4 to
facilitate:

• Integrated packet filtering

• IP options decoding for labeled networking

• Management of fragmented datagrams

• Network layer encapsulation (e.g., secure IP
tunnels)

Existing Netfilter [23] hooks are used to provide ac-
cess to IP datagrams in pre-routing, local input,
forwarding, local output and post-routing phases.
Through these hooks, LSM intercepts packets before
and after the standard iptables-based access control
and translation mechanisms. Note that the Netfil-
ter hooks used by LSM do not increase the code
footprint imposed by LSM on the standard kernel.

3.7.5 Network Devices

Within the Linux network stack, hardware and
software network devices are encapsulated by a
net device structure. LSM adds an security field
to this structure so that security state information
can be maintained on a per-device basis.

The security field for the net device structure may
be allocated during first-use initialization. A secu-
rity field management hook is called when the device
is being destroyed, allowing any allocated resources
associated with the associated security field to be
freed.

3.7.6 Netlink

Netlink sockets are a Linux-specific mechanism for
kernel-userspace communication. They are similar
to BSD route sockets, although more generalized.

As Netlink communications are connectionless and
asynchronously processed, security state associ-
ated with an application layer origin needs to be
stored with Netlink packets, then checked during
delivery to the destination kernel module. The
netlink send() hook is used to store the applica-
tion layer security state. The netlink recv() hook
is used to retrieve the stored security state as the
packet is received by the destination kernel module
and mediate final delivery.



3.8 Other System Hooks

LSM defines a miscellaneous set of hooks to protect
the remaining security sensitive actions that are not
covered by the hooks discussed above. These hooks
typically mediate system-level actions such as set-
ting the system’s host name or domain name, re-
booting the system, and accessing I/O ports. The
existing capability checks already protect these ac-
tions; however, the LSM hooks provide more finely
grained access control.

The LSM interface leverages the pre-existing
POSIX.1e capabilities infrastructure in the Linux
kernel. The capability checks can often override
standard DAC checks (akin to root). The checks
are limited to a 32 bit vector describing the re-
quired capability, e.g., CAP DAC OVERRIDE, and thus
give the module limited context when making ac-
cess control decisions. The system-level capable()
hook is placed in the existing capable() function
which gives LSM easy compatibility with POSIX.1e
capabilities as well as a moderate ability to override
DAC checks.

The LSM framework adds a security system call,
which is a thin wrapper around the sys security()
hook in the LSM interface. This system call is a
simple multiplexor which allows a module to de-
fine a set of policy specific system calls. The
LSM security system call interface is modeled after
the standard Linux socket system call multiplexor,
sys socketcall(2).

4 Testing and Functionality

The true impact of LSM will be felt if and when
LSM is accepted as a standard part of the Linux
kernel, and end-users can adopt security modules as
readily as they adopt other applications for Linux.
To be accepted into Linux, LSM must be highly
cost-effective. Section 4.1 summarizes the perfor-
mance cost of the LSM infrastructure. Section 4.2
presents the security impact of LSM, in the form
of modules that have already been implemented or
ported to LSM.

4.1 Performance Impact

The performance cost of the LSM framework is criti-
cal to its acceptance; in fact, performance cost was a
major part of the debate at the Linux 2.5 developer’s
summit that spawned LSM. To rigorously document
the performance costs of LSM, we performed both
microbenchmarks and macrobenchmarks that com-
pared a stock Linux kernel to one modified with the
LSM patch, but with no modules loaded.5

For microbenchmarks, we used the LMBench [22]
tool. LMBench was developed specifically to mea-
sure the performance of core kernel system calls and
facilities, such as file access, context switching, and
memory movement. LMBench has been particularly
effective at establishing and maintaining excellent
performance in these core facilities in the Linux ker-
nel.

LMBench outputs prodigious results. The worst
case overhead was 6.2% for stat(), 6.6% for
open/close, and 7.2% for file delete. These results
are to be expected, because of the relatively small
amount of work done in each call compared to the
work of checking for LSM mediation. The common
case was much better, often 0% overhead, ranging
up to 2% overhead.

For macrobenchmarking, we used the common ap-
proach of building the Linux kernel from source.
The results here were even better: no measurable
performance impact.6 More detailed performance
data can be found in [31].

4.2 Security Impact

Another key factor in the acceptance of the LSM
framework is that it provide some real security
value. This can be viewed in two ways. First, LSM
must not create new security holes and needs to be
thorough and consistent in its coverage. Second, the
LSM framework must be general enough to support
a variety of access control models.

Proving the correctness of the LSM framework has
not been handled by the LSM project directly. How-

5The performance costs of each module are the responsi-
bility of the module’s authors.

6In fact, the LSM case was actually faster, but we regard
that as an experimental anomaly, and do not claim that LSM
is a performance optimization :-)



ever, a project from IBM [9] has developed tools to
do both static and dynamic analysis of the LSM
framework. These tools have, in fact, helped im-
prove the LSM interface, and can help with ongoing
maintenance.

The real value of LSM is delivering effective security
modules. Porting access control models to the LSM
framework proves that it is functional as a general
purpose access control framework. As the name sug-
gests, LSM does not impact system security without
security modules. Presently, LSM supports the fol-
lowing security modules:

• SELinux A Linux implementation of the
Flask [28] flexible access control architecture
and an example security server that sup-
ports Type Enforcement, Role-Based Access
Control, and optionally Multi-Level Security.
SELinux was originally implemented as a ker-
nel patch [19] and was then reimplemented as
a security module that uses LSM. SELinux can
be used to confine processes to least privilege,
to protect the integrity and confidentiality of
processes and data, and to support application
security needs. The generality and comprehen-
siveness of SELinux helped to drive the require-
ments for LSM.

• DTE Linux An implementation of Domain
and Type Enforcement [3, 4] developed for
Linux [14]. Like SELinux, DTE Linux was
originally implemented as a kernel patch and
was then adapted to LSM. With this module
loaded, types can be assigned to objects and
domains to processes. The DTE policy restricts
access between domains and from domains to
types. The DTE Linux project also provided
useful input into the design and implementa-
tion of LSM.

• LSM port of Openwall kernel patch The
Openwall kernel patch [8] provides a collec-
tion of security features to protect a system
from common attacks, e.g., buffer overflows and
temp file races. A module is under development
that supports a subset of the Openwall patch.
For example, with this module loaded a victim
program will not be allowed to follow malicious
symlinks.

• POSIX.1e capabilities The POSIX.1e capa-
bilities [29] logic was already present in the
Linux kernel, but the LSM kernel patch cleanly

separates this logic into a security module. This
change allows users who do not need this func-
tionality to omit it from their kernels and it
allows the development of the capabilities logic
to proceed with greater independence from the
main kernel.

• LIDS (Linux Intrusion Detection Sys-
tem) started out as an intrusion detection sys-
tem, and then migrated towards intrusion pre-
vention in the form of an access control system
similar to SubDomain [7] that manages access
by describing what files a given program may
access.

5 Conclusions

Linux is a shared playroom, and thus needs to make
most players reasonably happy. LSM thus needs to
meet two criteria: be relatively painless for people
who don’t want it, and be useful and effective for
people who do want it.

We feel that LSM meets these criteria. The patch is
relatively small, and the performance data in Sec-
tion 4 shows that the LSM patch imposes nearly
zero overhead. The broad suite of security products
from around the world that have been implemented
for LSM shows that the LSM API is useful and ef-
fective for developing Linux security enhancements.
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7 Availability

LSM is available as a kernel patch for both the 2.4
and 2.5 Linux kernels. The patches are available
from http://lsm.immunix.org.
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