
Linux Kernel Security
Overview

Linux Security Summit Europe 2018
Edinburgh, UK

James Morris jmorris@namei.org

mailto:jmorris@namei.org

$ whoami
● Linux kernel security subsystem maintainer

● Linux kernel engineer at Microsoft

● Previously
– Netflter core team member
– Author of Linux kernel crypto API
– LSM development team
– SELinux kernel lead at Red Hat; invented MCS & sVirt
– Linux kernel manger at Oracle

Overview

● Background

● Major Components

● Resources

Linux Security Model

Discretionary Access Control (DAC)

DAC was inherited from Unix,
designed in late 1960s

“The frst fact to face is that UNIX was not
developed with security, in any realistic sense,

in mind; this fact alone guarantees a vast
number of holes.”

Dennis Ritchie, “On the Security of UNIX”, 1979

DAC is insufcient for modern security threats:

● does not protect against fawed or malicious code

● does not cover all security critical functions

● superuser violates security model

“It must be recognized that the mere notion of
a super-user is a theoretical, and usually

practical, blemish on any protection scheme.”

(also from Ritchie 1979)

Linux Kernel Security Extensions

POSIX Access Control Lists (ACLs)

● Extend Unix DAC’s abbreviated ACLs with fne-
grained permissions

● So, more DAC

POSIX Capabilities

● Splits superuser into high-level abstractions, e.g. CAP_NET_ADMIN

● Process-based

● Filesystem labels for executables

● Several issues:
– Privilege overlap and escalation
– Difcult to reason about overall security policy
– … and it’s still DAC

Audit

● Implemented to meet government certifcation
requirements (similar to “C2”)

● Actually quite useful, see auditctl(8)

seccomp

● Generalized syscall flter
● Reduces attack surface of kernel
● Not a sandbox, but useful component of one
● Implemented as BPF flters
● Complex...

– Use libseccomp()

Namespaces

● Private views of global resources:
– cgroup, ipc, network, pid, user, mount, uts

● Derived from plan9 concepts
● APIs: clone(2), setns(2), unshare(2)
● See also pam_namespace(8)
● Linux containers are namespaces + cgroups

Netflter

● Hooks in L3 code at packet fow points
● Pluggable:

– iptables
– ip6tables
– conntrack
– NAT

Cryptography API
● Many types of algorithms:

–ciphers, compressors, digests, hashes, rngs etc.
● Synchronous and asynchronous APIs
● Zero-copy interface
● Support for crypto hardware
● Userspace API via AF_ALG

● Users include:
–Disk encryption
– IPSec
–Key management
– Integrity subsystem

Key Management
● Management of keys, keyrings, tokens etc.
● Key attributes: owner, group, permission mask,

expiry, payload, type, state, description
● Several types of keys implemented, e.g.:

– per-process: user, session
– trusted keys: TPM generated and sealed
– encrypted keys: kernel generated & encrypted

● Userland API: keyctl(1)

Linux Security Modules (LSM)

● Allows diferent access control schemes to be plugged
into kernel

● Hook API:
– Mediation of all security-critical interactions in kernel
– Race-free and with all relevant security information available

● Major: SELinux, Apparmor, Smack
● Minor (stackable): YAMA, Capabilities

Security Enhanced Linux (SELinux)

● All objects & subjects have security labels

● All relevant security interactions mediated via fne-grained
generalized permissions

● Flexible security policies: separation of mechanism and policy

● Policy centrally administered, not overridable by user (including root)

● Helps contain breaches via least privilege

● Implemented in Fedora family, Android

Smack

● Simplifed MAC (also label-based)

● Smaller code and policy footprints

● Typically seen in embedded space (e.g. Tizen)

Apparmor

● Pathname-based

● Familiar Unix-like confguration fles

● Designed for ease of use

● Implemented in Suse, Ubuntu

Platform Security

● Kernel support for platform security features, such
as:
– TPM
– NX, SMEP
– SEV, SME
– SGX
– TEEs

Integrity Management
● Integrity Measurement Architecture (IMA)

– Extends secure/trusted boot to the OS
– Detects if fles have been maliciously or accidentally altered
– Optimally w/ TPM
– Remote attestation
– Local appraisal
– Digital signature support (data authenticity)

● Extended Verifcation Module (EVM)
– Protects security xattrs against ofine attack

● dm-verity / dm-integrity
– Transparent block-level integrity verifcation

Kernel Self Protection (KSP)
● Harden kernel against attack

● Kernel Self Protection Project (KSPP)
– Started in 2015
– Politically challenging
– Initially focused on backporting grsec/PAX to mainline
– Focus on killing bug classes vs. individual bugs
– https://kernsec.org/wiki/index.php/Kernel_Self_Protection_Project

Resources
● LSM mailing list

– http://vger.kernel.org/vger-lists.html#linux-security-module

● Other mailing lists:
– linux-integrity
– linux-keyrings
– oss-security (Openwall)

● Wiki: kernsec.org

● LWN Security
– http://lwn.net/Security

http://vger.kernel.org/vger-lists.html#linux-security-module

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

