

Secure and Simple
Sandboxing in SELinux

James Morris
jmorris@namei.org

FOSS.my 2009
Kuala Lumpur, Malaysia

Overview

● Sandboxing

● SELinux

● Sandbox design and implementation

● Use examples

● Status and future directions

Sandboxing

● Many types of sandbox

● Basic concept is to isolate code
● Process arbitrary input
● Run third party code
● Contain vulnerabilities

● For this talk: process-level sandbox

Existing Sandboxes

● Chroot, seccomp, ptrace etc., all problematic

● New design: setuid sandbox (Evans/Tiennes)

● Don't utilize MAC facilities (SELinux, Smack)

● Typically based around restricting ambient
privilege

Sandboxing with MAC

● Utilize MAC (mandatory access control) to
enhance sandboxing

● Layered approach:
● Process-level isolation (MMU)
● DAC separation (e.g. privsep, UID allocator)
● Namespaces / chroot etc.
● MAC isolation policy

Reduce Ambient Authority

● Security can be simplified by reducing ambient
auhority.

● Consider:
● wc file.txt

– wc needs general read permission for the system & uses
this 'ambient' authority to open file.

● cat file.txt | wc
– cat opens the file and passes open fd to wc, bundling the

object and authority together. Specific authority is
delegated and wc now needs no permissions to access
filesystem!

Usability

● Combining MAC policy with fd passing is
conceptually simple for users: the latter follows
standard Unix use conventions.

● Does not require policy administration
● Simple supplied policy which strongly isolates

sandboxed apps
● Zero config

● High level abstraction:
● Simply run apps via a sandbox launcher
● Kiosk mode, sVirt etc. are similar approaches

SELinux Implementation

● New sandbox label added to policy
● Has no general permissions, only those

absolutely required to execute (e.g. load shared
libraries, which can be further locked down if
desired)

● sandbox launcher causes app to be executed with
this label; I/O happens via fd

● Unique MCS label assigned to each instance for
MAC isolation (cf. UID allocation – both could be
used)

● Sets up home & tmp dirs; copies in specified files;
cleans up at exit

/usr/bin/sandbox

● Creates temporary sandbox directory

● Copies in specified files

● Sets up security labeling

● Executes specified application in sandbox

● Cleanup at exit

Basic Use
$ /usr/bin/id -Z
unconfined_t:c0.c1023

$ sandbox /usr/bin/id -Z
sandbox_t:c533,c903

● sandbox_t -- broad MAC policy for all sandboxes,
isolate them from wider system

● c533,c903 -- unique MCS label to separate sandboxes
from each other (actual value does not matter, just needs
to be unique)

Demonstration

$ touch /tmp/foo1

$ sandbox touch /tmp/foo2
/bin/touch: cannot touch `/tmp/foo2':
Permission denied

Demonstration

$ sandbox cat /proc/$$/maps
/bin/cat: /proc/3034/maps: Permission
denied

Advanced Uses

● Processing pipelines:
● Scanning mail for viruses, spam etc.; run each

stage in a sandbox
● Packet dissectors, etc.

● Web application framework
● e.g. XSLT rendering, CGI handling

● Any case where a separate process can be
launched and use fd for I/O

Desktop Security

● Difficult to sandbox desktop apps because of
environment (X, GNOME, DBus etc.)
● complicated

● Sandbox X:
● Launch sandboxed applications in nested X server:

simple and effective!
● Extends basic sandbox utility:

/usr/sbin/seunshare

● setuid program:
● unshare(2) – dissasociates mount namespace
● bind mounts new $HOME and /tmp dirs
● calls setexeccon to set security label
● drops all capabilities
● calls sandboxX.sh

/usr/share/sandbox/sandboxX.sh

● Configures X environment
● Launches Xephyr nested X server

● runs matchbox window manager
● runs specified application
● everything runs with sandbox security label
● cleans up at exit

● Some limitations (currently):
● Cannot resize window
● No copy/paste

Current status

● SELinux Sandbox will be in Fedora 12
● Currently available in rawhide

Demo

Future Directions

● Continued high-level integration, e.g. make it
easy to run sandboxed web browsers
● Interaction issues to resolve, e.g. ask user to save

changed data when exiting sandbox?

● Integration with XACE window labeling,
hardware security etc.

● Use sandboxing to restrict administrative
privilege

What we really need most...

● A standardized high-level API

● Developers / ISVs currently roll their own
security or just give up

● Difficult, but can be done

Resources

● Dan Walsh's blog
● danwalsh.livejournal.com

● Dan Walsh's LPC talk
● http://video.linuxfoundation.org/video/1565

● Dan Walsh's email address & cell phone
● dwalsh@redhat.com
● +1 212-555-4240

http://video.linuxfoundation.org/video/1565
mailto:dwalsh@redhat.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

