Secure and Simple
Sandboxing in SELinux

James Morris
Jmorris@namei.org

FOSS.my 2009
Kuala Lumpur, Malaysia

Overview

« Sandboxing

e SELINuUX

« Sandbox design and implementation
* Use examples

e Status and future directions

Sandboxing

 Many types of sandbox

» Basic concept is to isolate code

* Process arbitrary input
e Run third party code
e Contain vulnerabilities

* For this talk: process-level sandbox

Existing Sandboxes

* Chroot, seccomp, ptrace etc., all problematic
 New design: setuid sandbox (Evans/Tiennes)

 Don't utilize MAC facllities (SELInux, Smack)

» Typically based around restricting ambient
privilege

Sandboxing with MAC

» Utiize MAC (mandatory access control) to
enhance sandboxing

» | ayered approach:

* Process-level isolation (MMU)

 DAC separation (e.g. privsep, UID allocator)
« Namespaces / chroot etc.

« MAC isolation policy

Reduce Ambient Authority

* Security can be simplified by reducing ambient
auhority.

e Consider:
e wCc file.txt

- wc needs general read permission for the system & uses
this ‘ambient' authority to open file.

 cat file.txt | wc

— cat opens the file and passes open fd to we, bundling the
object and authority together. Specific authority is
delegated and wc now needs no permissions to access
filesystem!

Usability

 Combining MAC policy with fd passing is
conceptually simple for users: the latter follows
standard Unix use conventions.

* Does not require policy administration

* Simple supplied policy which strongly isolates
sandboxed apps

« Zero config
* High level abstraction:

e Simply run apps via a sandbox launcher
« Kiosk mode, sVirt etc. are similar approaches

SELInux Implementation

 New sandbox label added to policy

 Has no general permissions, only those
absolutely required to execute (e.g. load shared
libraries, which can be further locked down if
desired)

« sandbox launcher causes app to be executed with
this label; I/O happens via fd

* Unique MCS label assigned to each instance for
MAC isolation (cf. UID allocation — both could be
used)

* Sets up home & tmp dirs; copies in specified files;
cleans up at exit

/usr/bin/sandbox

Creates temporary sandbox directory
Copies in specified files

Sets up security labeling

Executes specified application in sandbox

Cleanup at exit

Basic Use

$ /usr/bin/id -Z
unconfined t:c0.c1023

$ sandbox /usr/bin/id -Z
sandbox_t:c533,c903

e sandbox _t -- broad MAC policy for all sandboxes,
Isolate them from wider system

» ¢533,c903 -- unique MCS label to separate sandboxes
from each other (actual value does not matter, just needs
to be unique)

Demonstration

$ touch /tmp/fool

$ sandbox touch /tmp/foo2
/bin/touch: cannot touch /tmp/foo2':
Permission denied

Demonstration

$ sandbox cat /proc/$$/maps
/bin/cat: /proc/3034/maps: Permission
denled

Advanced Uses

* Processing pipelines:

e Scanning mail for viruses, spam etc.; run each
stage in a sandbox

 Packet dissectors, etc.

* Web application framework
* e.g. XSLT rendering, CGI handling

 Any case where a separate process can be
launched and use fd for I/O

Desktop Security

 Difficult to sandbox desktop apps because of
environment (X, GNOME, DBus etc.)

 complicated

e Sandbox X:

« Launch sandboxed applications in nested X server:
simple and effective!

* Extends basic sandbox utility:

/usr/sbin/seunshare

e setuid program:
e unshare(2) — dissasociates mount nhamespace
* bind mounts new $HOME and /tmp dirs

calls setexeccon to set security label

drops all capabilities
calls sandboxX.sh

/usr/share/sandbox/sandboxX.sh

« Configures X environment
» Launches Xephyr nested X server

e runs matchbox window manager

* runs specified application

» everything runs with sandbox security label
e cleans up at exit

 Some limitations (currently):

e Cannot resize window
* No copy/paste

Current status

 SELInux Sandbox will be in Fedora 12
« Currently available in rawhide

Demo

Fr

File Edit View Terminal Help

[jmorris@macbook ~]$ sandbox -X evince ~/Desktop/p761l-th(~]
ompson, pdf

File Edit WView Go Help

\ 4 of3 | Fit Page Width 3

Mext

Thumbnails w3

Fabmbm.un Tim by Frod

TURING AWARD LECTURE

] o Reflections on Trusting Trus

sandbox ,
' To what extent should one trust g statement that a progranm is free of T

horses? Perhaps it is wmore important o trust the people who wrot
software.

p761-thompson.pdf

KEN THOMPSON

INTEODUCTION programs, [wonld lika to prasent in you the cute
I thank the ACK for this award. T can't holp but frel program 1 ever weote, 1 will do this in three stag
that T am receiving thia honnr for timing and serendip- iry to bring it together at the end.

ity o5 much as technical merit. UNIX' swept into popu-
larity with zn industry-wide chanse from central main-

(rames 1o allonomols mini. | suspect thal Daniel Bob- STAGE 1

b RN | N T . R 1 R

Future Directions

* Continued high-level integration, e.g. make it
easy to run sandboxed web browsers

* |nteraction issues to resolve, e.g. ask user to save
changed data when exiting sandbox?

 Integration with XACE window labeling,
hardware security etc.

» Use sandboxing to restrict administrative
privilege

What we really need most...

» A standardized high-level API

* Developers / ISVs currently roll their own
security or just give up

e Difficult, but can be done

Resources

 Dan Walsh's blog

e danwalsh.livejournal.com

 Dan Walsh's LPC talk
 http://video.linuxfoundation.org/video/1565

 Dan Walsh's email address & cell phone

 dwalsh@redhat.com
e +]1 212-555-4240

http://video.linuxfoundation.org/video/1565
mailto:dwalsh@redhat.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

