

sVirt: Hardening Linux
Virtualization with Mandatory

Access Control

James Morris
Red Hat Security Engineering

Linux.conf.au 2009
Hobart, Australia

Goal:

Improve security for Linux
virtualization

Linux Virtualization:

Where the “hypervisor” is a normal
Linux process

KVM

Lguest

UML

Host Hardware

Host Kernel

Host Userspace

Guest
Kernel

Guest
Userspace

Guest
Kernel

Guest
Userspace

Guest
Kernel

Guest
Userspace

Guest
Kernel

Guest
Userspace

Utilize existing process-based
security mechanisms

DAC is not enough:

Subjects can modify own security
policy

Mandatory Access Control
(MAC):

Subjects cannot bypass security
policy

Virtualization Threat Model

(work in progress)

Virtualization introduces new
security risks

Flawed hypervisor:

Malicious guest breaks out, attacks
other guests or host

Before virtualization:

Systems were physically separated,
damage limited to network attacks

Host HardwareHost Hardware

Host Kernel

Host Userspace

Web Server

Host HardwareHost Hardware

Host Kernel

Host Userspace

DNS Server

Local Network

Attack

After virtualization:

Guest systems running on same
server, possibly as same UID

Host Hardware

Host Kernel

Host Userspace

Guest
Kernel

Guest
Userspace

Guest
Kernel

Guest Userspace

Web Server

Guest
Kernel

Guest
Userspace

Guest
Kernel

Guest Userspace

DNS Server

memory,
storage, etc.

local
exploits

Malicious or compromised guests
can now attack other guests via

local mechanisms

Hypervisor vulnerabilities:

Not theoretical

Evolving field

Potentially huge payoffs

sVirt in a nutshell:

Isolate guests using MAC security
policy

Contain hypervisor breaches

libvirt:

Virtualization API by Daniel Veillard

Abstraction layer for managing
different virt schemes

Xen, KVM, LXC, OpenVZ

virsh virt-manager

drivers

Xen

OpenVZ

KVM

LXC

hypervisors

iSCSI

logical

NFS

fs

storage

diskUML

API

storage

node

Simplified libvirt architecture

host

hypervisor

guest

guest

guest

sVirt design:

Pluggable security framework for
libvirt

Supports MAC security schemes
(SELinux, SMACK)

sVirt design:

Security “driver” manages MAC
labeling of guests and resources

MAC policy enforced by host kernel

virsh virt-manager

drivers

Xen

OpenVZ

KVM

LXC

hypervisors

iSCSI

logical

NFS

fs

storage

diskUML

API

storage

node

Simplified libvirt architecture w/ SVirt

host

hypervisor

guest

guest

guest

SELinux

etc.

security

* security labels

* *

*

*

sVirt design:

Reuse of proven code and security
models

Coherent and complete system
policy

Reduced complexity and cost

sVirt design:

Must be usable and useful with
demonstrable value

sVirt v1.0:

Provide simple isolation of guests

Zero configuration

Debuggable

SELinux Policy:

Guests and resources uniquely
labeled

virtd_isolated_t:<UUID>

SELinux Policy:

Coarse rules for all isolated guests
applied to virtd_isolated_t

SELinux Policy:

For simple isolation: all accesses
between different UUIDs are denied

Host Hardware

Host Kernel

Host Userspace

Guest
Kernel

Guest
Userspace

Guest
Kernel

virtd_isolated_t:1

Guest
Kernel

Guest
Userspace

Guest
Kernel

virtd_isolated_t:2

DNS Server

SELinux

virt_image_t:2virt_image_t:1

Web Server

Future enhancements:

Different types of isolated guests

virtd_isolated_webserver_t

Future enhancements:

Virtual network security

Controlled flow between guests

Distributed guest security

Multilevel security

Related work:

Labeled NFS

Labeled Networking

XACE

Similar work:

XSM (port of Flask to Xen)

Several proprietary schemes

Current status:

Low-level libvirt integration done

Can launch labeled guest

Basic label support in virsh

sVirt project page:

http://selinuxproject.org/page/SVirt

Questions...

