sVirt: Hardening Linux
Virtualization with Mandatory
Access Control

Linux.conf.au 2009
Hobart, Australia



Goal:

Improve security for Linux
virtualization



Linux Virtualization:

Where the “hypervisor” Is a normal
Linux process



KVM

Lguest

UML



Guest Guest Guest
Userspace Userspace Userspace

Guest Guest Guest
Kernel Kernel Kernel




Utilize existing process-based
security mechanisms



DAC Is not enough:

Subjects can modify own security
policy



Mandatory Access Control
(MAC):

Subjects cannot bypass security
policy



Virtualization Threat Model



Virtualization introduces new
security risks



Flawed hypervisor:

Malicious guest breaks out, attacks
other guests or host



Before virtualization:

Systems were physically separated,
damage limited to network attacks



Attack

Local Network



After virtualization:

Guest systems running on same
server, possibly as same UID



Guest Guest
Kernel Kernel




Malicious or compromised guests
can now attack other guests via
local mechanisms



Hypervisor vulnerabilities:

Not theoretical
Evolving field

Potentially huge payoffs



sVirt In a nutshell:

|solate guests using MAC security
policy

Contain hypervisor breaches



libvirt:

Virtualization API by Daniel Velillard

Abstraction layer for managing
different virt schemes

Xen, KVM, LXC, OpenVZ



Simplified libvirt architecture

/ hypervisor |




sVirt design:

Pluggable security framework for
libvirt

Supports MAC security schemes
(SELInux, SMACK)



sVirt design:

Security “driver” manages MAC
labeling of guests and resources

MAC policy enforced by host kernel



Simplified libvirt architecture w/ SVirt

' SELinux /
etc.
logical
fs
disk

* security labels




sVirt design:
Reuse of proven code and security
models

Coherent and complete system
policy

Reduced complexity and cost



sVirt design:

Must be usable and useful with
demonstrable value



sVirt v1.0:

Provide simple isolation of guests
Zero configuration

Debuggable



SELInux Policy:

Guests and resources unigquely
labeled



SELInux Policy:

Coarse rules for all isolated guests
applied to



SELInux Policy:

For simple isolation: all accesses
between different UUIDs are denied



virtd _isolated t:2

Guest Guest
Kernel Kernel

SELinux

virt_image_t:1 virt_image_t:2




Future enhancements:

Different types of isolated guests



Future enhancements:

Virtual network security
Controlled flow between guests
Distributed guest security

Multilevel security



Related work:

Labeled NFS
Labeled Networking

XACE



Similar work:

XSM (port of Flask to Xen)

Several proprietary schemes



Current status:

Low-level libvirt integration done
Can launch labeled guest

Basic label support in virsh



sVirt project page:



Questions...



