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Goal:

Improve security for Linux 
virtualization



  

Linux Virtualization:

Where the “hypervisor” is a normal 
Linux process
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Utilize existing process-based 
security mechanisms



  

DAC is not enough:

Subjects can modify own security 
policy



  

Mandatory Access Control 
(MAC):

Subjects cannot bypass security 
policy



  

Virtualization Threat Model

(work in progress)



  

Virtualization introduces new 
security risks



  

Flawed hypervisor:

Malicious guest breaks out, attacks 
other guests or host



  

Before virtualization:

Systems were physically separated, 
damage limited to network attacks
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After virtualization:

Guest systems running on same 
server, possibly as same UID
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Malicious or compromised guests 
can now attack other guests via 

local mechanisms



  

Hypervisor vulnerabilities:

Not theoretical

Evolving field

Potentially huge payoffs



  

sVirt in a nutshell:

Isolate guests using MAC security 
policy

Contain hypervisor breaches



  

libvirt:

Virtualization API by Daniel Veillard

Abstraction layer for managing 
different virt schemes

Xen, KVM, LXC, OpenVZ
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sVirt design:

Pluggable security framework for 
libvirt

Supports MAC security schemes 
(SELinux, SMACK)



  

sVirt design:

Security “driver” manages MAC 
labeling of guests and resources

MAC policy enforced by host kernel
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sVirt design:

Reuse of proven code and security 
models

Coherent and complete system 
policy

Reduced complexity and cost



  

sVirt design:

Must be usable and useful with 
demonstrable value



  

sVirt v1.0:

Provide simple isolation of guests

Zero configuration

Debuggable



  

SELinux Policy:

Guests and resources uniquely 
labeled

virtd_isolated_t:<UUID>



  

SELinux Policy:

Coarse rules for all isolated guests 
applied to virtd_isolated_t



  

SELinux Policy:

For simple isolation: all accesses 
between different UUIDs are denied
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Future enhancements:

Different types of isolated guests

virtd_isolated_webserver_t



  

Future enhancements:

Virtual network security

Controlled flow between guests

Distributed guest security

Multilevel security



  

Related work:

Labeled NFS

Labeled Networking

XACE



  

Similar work:

XSM (port of Flask to Xen)

Several proprietary schemes



  

Current status:

Low-level libvirt integration done

Can launch labeled guest

Basic label support in virsh



  

sVirt project page:

http://selinuxproject.org/page/SVirt



  

Questions...


